Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

NGC 7026


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Optically Thick Radio Cores of Narrow-Waist Bipolar Nebulae
We report our search for optically thick radio cores in 16 narrow-waistbipolar nebulae. Optically thick cores are a characteristic signature ofcollimated ionized winds. Eleven northern nebulae were observed with theVery Large Array (VLA) at 1.3 and 0.7 cm, and five southern nebulae wereobserved with the Australia Telescope Compact Array (ATCA) at 6 and 3.6cm. Two northern objects, 19W32 and M1-91, and three southern objects,He 2-25, He 2-84, and Mz 3, were found to exhibit a compact radio corewith a rising spectrum consistent with an ionized jet. Such jets havebeen seen in M2-9 and may be responsible for shaping bipolar structurein planetary nebulae.

An Atlas of [N II] and [O III] Images and Spectra of Planetary Nebulae
We present an atlas of Hubble Space Telescope images and ground-based,long-slit, narrowband spectra centered on the 6584 Å line of [NII] and the 5007 Å line of [O III]. The spectra were obtained fora variety of slit positions across each target (as shown on the images)in an effort to account for nonspherical nebular geometries in a robustmanner. We have extended the prolate ellipsoidal shell model originallydevised by Aaquist, Zhang, and Kwok to generate synthetic images, aswell as long-slit spectra. Using this model, we have derived basicparameters for the subsample of PNe that present ellipsoidal appearancesand regular kinematic patterns. We find differences between ourparameters for the target PNe as compared to those of previous studies,which we attribute to increased spatial resolution for our image dataand the inclusion of kinematic data in the model fits. The data andanalysis presented in this paper can be combined with detections ofnebular angular expansion rates to determine precise distances to the PNtargets.

X-ray emission from planetary nebulae calculated by 1D spherical numerical simulations
We calculate the X-ray emission from both constant and time-evolvingshocked fast winds blown by the central stars of planetary nebulae (PNe)and compare our calculations with observations. Using sphericallysymmetric numerical simulations with radiative cooling, we calculate theflow structure and the X-ray temperature and luminosity of the hotbubble formed by the shocked fast wind. We find that a constant fastwind gives results that are very close to those obtained from theself-similar solution. We show that in order for a fast shocked wind toexplain the observed X-ray properties of PNe, rapid evolution of thewind is essential. More specifically, the mass-loss rate of the fastwind should be high early on when the speed is ~300-700 kms-1, and then it needs to drop drastically by the time the PNage reaches ~1000 yr. This implies that the central star has a veryshort pre-PN (post-asymptotic giant branch) phase.

XMM-Newton Observations of the Bipolar Planetary Nebulae NGC 2346 and NGC 7026
We have obtained X-ray observations of the bipolar planetary nebulae(PNe) NGC 2346 and NGC 7026 with XMM-Newton. These observations detecteddiffuse X-ray emission from NGC 7026 but not from NGC 2346. The X-rayemission from NGC 7026 appears to be confined within the bipolar lobesof the PN and has spectral properties suggesting a thermal plasmaemitting at a temperature of1.1+0.5-0.2×106 K. The X-rayspectrum of NGC 7026 is modeled using nebular and stellar abundances toassess whether a significant amount of nebular material has been mixedinto the shocked wind, but the results of this comparison are notconclusive owing to the small number of counts detected. Observations ofbipolar PNe indicate that diffuse X-ray emission is much less likelydetected in open-lobed nebulae than closed-lobed nebulae, possiblybecause open-lobed nebulae do not have strong fast winds or are unableto retain hot gas.

Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way
This paper presents a homogeneous study of abundances in a sample of 79northern Galactic planetary nebulae (PNe) whose morphological classeshave been uniformly determined. Ionic abundances and plasma diagnosticswere derived from selected optical line strengths in the literature, andelemental abundances were estimated with the ionization correctionfactor developed by Kingsbourgh & Barlow in 1994. We compare theelemental abundances to the final yields obtained from stellar evolutionmodels of low- and intermediate-mass stars, and we confirm that mostbipolar PNe have high nitrogen and helium abundance and are the likelyprogeny of stars with main-sequence mass greater than 3Msolar. We derive =0.27 and discuss the implication of such ahigh ratio in connection with the solar neon abundance. We determine theGalactic gradients of oxygen and neon and foundΔlog(O/H)/ΔR=-0.01 dex kpc-1 andΔlog(Ne/H)/ΔR=-0.01 dex kpc-1. These flat PNgradients are irreconcilable with Galactic metallicity gradientsflattening with time.

X-ray emission by a shocked fast wind from the central stars of planetary nebulae
We calculate the X-ray emission from the shocked fast wind blown by thecentral stars of planetary nebulae (PNe) and compare with observations.Using spherically symmetric self-similar solutions, we calculate theflow structure and X-ray temperature for a fast wind slamming into apreviously ejected slow wind. We find that the observed X-ray emissionof six PNe can be accounted for by shocked wind segments that wereexpelled during the early-PN phase, if the fast wind speed is moderate,v2~ 400-600kms-1, and the mass-loss rate is a fewtimes 10-7Msolaryr-1. We find, asproposed previously, that the morphology of the X-ray emission is in theform of a narrow ring inner to the optical bright part of the nebula.The bipolar X-ray morphology of several observed PNe, which indicates animportant role of jets, rather than a spherical fast wind, cannot beexplained by the flow studied here.

Galactic Planetary Nebulae with Wolf-Rayet Nuclei III. Kinematical Analysis of a Large Sample of Nebulae
Expansion velocities (V_{exp}) of different ions and line widths at thebase of the lines are measured and analyzed for 24 PNe with [WC]-typenuclei (WRPNe), 9 PNe ionized by WELS (WLPNe) and 14 ordinary PNe. Acomparative study of the kinematical behavior of the sample clearlydemonstrates that WRPNe have on average 40-45% larger V_{exp}, andpossibly more turbulence than WLPNe and ordinary PNe. WLPNe havevelocity fields very much like the ones of ordinary PNe, rather than theones of WRPNe. All the samples (WRPNe, WLPNe and ordinary PNe) showexpansion velocities increasing with age indicators, for example is larger for low-density nebulae and also it is largerfor nebulae around high-temperature stars. This age effect is muchstronger for evolved WRPNe, suggesting that the [WC] winds have beenaccelerating the nebulae for a long time, while for non-WRPNe theacceleration seems to stop at some point when the star reaches atemperature of about 90,000 - 100,000. Non-WR nebulae reach a maximumV_{exp} ≤ 30 km s(-1) evolved WRPNe reach maximum V_{exp} about 40km s(-1) . For all kinds of objects (WRPNe and non-WRPNe) it is foundthat on average V_{exp}(N(+) ) is slightly larger than V_{exp}(O(++) ),indicating that the nebulae present acceleration of the external shells.

Accreting White Dwarfs among the Planetary Nebulae Most Luminous in [O III] λ5007 Emission
I propose that some of the most luminous planetary nebulae (PNs) areactually proto-PNs, where a companion white dwarf (WD) accretes mass ata relatively high rate from the post-asymptotic giant branch star thatblew the nebula. The WD sustains a continuous nuclear burning andionizes the nebula. The WD is luminous enough to make the dense nebulaluminous in the [O III] λ5007 line. In young stellar populationsthese WD accreting systems account for a small fraction of [OIII]-luminous PNs, but in old stellar populations these binaries mightaccount for most, or even all, of the [O III]-luminous PNs. This mightexplain the puzzling constant cutoff (maximum) [O III] λ5007luminosity of the planetary nebula luminosity function across differentgalaxy types.

Blowing up warped disks in 3D. Three-dimensional AMR simulations of point-symmetric nebulae
The Generalized Interacting Stellar Winds model has been very successfulin explaining observed cylindrical and bipolar shapes of planetarynebulae. However, many nebulae have a multipolar or point-symmetricshape. Previous two-dimensional calculations showed that these seeminglyenigmatic forms can be reproduced by a two-wind model in which theconfining disk is warped, as is expected to occur in irradiated disks.In this paper we present the extension to fully three-dimensionalAdaptive Mesh Refinement simulations using the publicly availablehydrodynamics package Flash. We briefly describe the mechanism leadingto a radiation driven warped disk, and give an equation for its shape.We derive time scales related to the disk and compare them to theradiative cooling time scale of the gas, thereby determining therelevant part of parameter space. By comparing two-dimensionalcalculations including realistic radiative cooling through a coolingcurve, with ones employing a low value for the adiabatic index γ,we show that the latter, computationally less expensive approach, is avalid approximation for treating cooling in our nebulae. The results ofthe fully three-dimensional wind-disk simulations show our mechanism tobe capable of producing a plethora of multipolar (and quadrupolar)morphologies, which can explain the observed shape of a number of(proto-)planetary nebulae.

The abundance discrepancy - recombination line versus forbidden line abundances for a northern sample of galactic planetary nebulae
We present deep optical spectra of 23 galactic planetary nebulae, whichare analysed in conjunction with archival infrared and ultravioletspectra. We derive nebular electron temperatures based on standardcollisionally excited line (CEL) diagnostics as well as the hydrogenBalmer jump and find that, as expected, the Balmer jump almost alwaysyields a lower temperature than the [OIII] nebular-to-auroral lineratio. We also make use of the weak temperature dependence of helium andOII recombination line ratios to further investigate the temperaturestructure of the sample nebulae. We find that, in almost every case, thederived temperatures follow the relation , which is the relationpredicted by two-component nebular models in which one component is coldand hydrogen-deficient. Te(OII) may be as low as a fewhundred Kelvin, in line with the low temperatures found for thehydrogen-deficient knots of Abell 30 by Wesson, Liu and Barlow.Elemental abundances are derived for the sample nebulae from both CELsand optical recombination lines (ORLs). ORL abundances are higher thanCEL abundances in every case, by factors ranging from 1.5 to 12. Fiveobjects with O2+ abundance discrepancy factors greater than 5are found. DdDm 1 and Vy 2-2 are both found to have a very largeabundance discrepancy factor of 11.8.We consider the possible explanations for the observed discrepancies.From the observed differences between Te(OIII) andTe(BJ), we find that temperature fluctuations cannot resolvethe abundance discrepancies in 22 of the 23 sample nebulae, implyingsome additional mechanism for enhancing ORL emission. In the oneambiguous case, the good agreement between abundances derived fromtemperature-insensitive infrared lines and temperature-sensitive opticallines also points away from temperature fluctuations being present. Theobserved recombination line temperatures, the large abundancediscrepancies and the generally good agreement between infrared andoptical CEL abundances all suggest instead the existence of a coldhydrogen-deficient component within the `normal' nebular gas. The originof this component is as yet unknown.

The Chemical Composition of Galactic Planetary Nebulae with Regard to Inhomogeneity in the Gas Density in Their Envelopes
The results of a study of the chemical compositions of Galacticplanetary nebulae taking into account two types of inhomogeneity in thenebular gas density in their envelopes are reported. New analyticalexpressions for the ionization correction factors have been derived andare used to determine the chemical compositions of the nebular gas inGalactic planetary nebulae. The abundances of He, N, O, Ne, S, and Arhave been found for 193 objects. The Y Z diagrams for various Heabundances are analyzed for type II planetary nebulae separately andjointly with HII regions. The primordial helium abundance Y p andenrichment ratio dY/dZ are determined, and the resulting values arecompared with the data of other authors. Radial abundance gradients inthe Galactic disk are studied using type II planetary nebulae.

X-ray Observations of Hot Gas in Planetary Nebulae
The formation and shaping of planetary nebulae (PNe) is a complexprocess that involves the action of multiple agents, including faststellar winds and collimated outflows. Both fast stellar winds andcollimated outflows can produce shock-heated gas that emits diffuseX-rays. Hot gas in PN interiors was hinted by ROSAT observations,but unambiguous detections of diffuse X-ray emission were not made untilChandra and XMM-Newton became available. The unprecedentedangular resolution and sensitivity of these new X-ray observations allowus to investigate in detail the physical properties and origin of thehot gas content of PNe and to assess its dynamical effects on theshaping and expansion of PNe. This paper reviews the results from recentX-ray observations of PNe and discusses their implications to ourunderstanding of the formation and evolution of PNe.

XMM-Newton Observations of Hot Gas in Two Bipolar Planetary Nebulae: NGC 2346 and NGC 7026
Planetary Nebulae (PNe) consist of material ejected by stars with masses≤8-10 Mȯ and form through the interaction between thecurrent fast stellar wind and previous asymptotic giant branch (AGB)wind. PNe exhibit a large variety of shapes but most can be classifiedas either elliptical or bipolar. Different scenarios have been suggestedfor these two broad classes of PNe, including non-isotropic mass loss inthe AGB phase, early shaping of the nebula through fast collimatedoutflows, and binarity. The impact of the fast stellar winds orcollimated outflows, with velocities often >1000 km s-1,produces shock-heated gas that fills the interior of the PN and isexpected to emit X-rays. Indeed, XMM-Newton and Chandra have detecteddiffuse X-ray emission from several elliptical PNe, but the large numberof Chandra observations of bipolar PNe have yielded positive detectionsin only two young nebulae - NGC 7027 and Mz 3.We have used XMM-Newton to observe two evolved bipolar PNe: NGC 2346 andNGC 7026. These two PNe are selected because of their different bipolarlobe structures, open lobes in NGC 2346 and closed lobes in NGC 7026.Diffuse X-ray emission is detected from only NGC 7026. The X-rayemission fills its bipolar lobes and shows a spectrum consistent withthin plasma emission at a temperature of 1.5×106 K. ItsX-ray luminosity is ˜1×1032 ergs s-1for a distance of 1.9 kpc.We have examined all available Chandra and XMM-Newton observations ofbipolar PNe and find that diffuse X-ray emission is detected only fromthree nebulae with closed lobe structures. No bipolar PNe with openlobes have been detected in X-rays. Evidently, hot gas is dispersed inopen lobes but can be confined within closed lobes to produce detectableX-ray emission.

A reexamination of electron density diagnostics for ionized gaseous nebulae
We present a comparison of electron densities derived from opticalforbidden line diagnostic ratios for a sample of over a hundred nebulae.We consider four density indicators, the [O II]λ3729/λ3726, [S II] λ6716/λ6731, [Cl III]λ5517/λ5537 and [Ar IV] λ4711/λ4740 doubletratios. Except for a few H II regions for which data from the literaturewere used, diagnostic line ratios were derived from our own high qualityspectra. For the [O II] λ3729/λ3726 doublet ratio, we findthat our default atomic data set, consisting of transition probabilitiesfrom Zeippen (\cite{zeippen1982}) and collision strengths from Pradhan(\cite{pradhan}), fit the observations well, although at high electrondensities, the [O II] doublet ratio yields densities systematicallylower than those given by the [S II] λ6716/λ6731 doubletratio, suggesting that the ratio of transition probabilities of the [OII] doublet, A(λ3729)/A(λ3726), given by Zeippen(\cite{zeippen1982}) may need to be revised upwards by approximately 6per cent. Our analysis also shows that the more recent calculations of[O II] transition probabilities by Zeippen (\cite{zeippen1987a}) andcollision strengths by McLaughlin & Bell (\cite{mclaughlin}) areinconsistent with the observations at the high and low density limits,respectively, and can therefore be ruled out. We confirm the earlierresult of Copetti & Writzl (\cite{copetti2002}) that the [O II]transition probabilities calculated by Wiese et al. (\cite{wiese}) yieldelectron densities systematically lower than those deduced from the [SII] λ6716/λ6731 doublet ratio and that the discrepancy ismost likely caused by errors in the transition probabilities calculatedby Wiese et al. (\cite{wiese}). Using our default atomic data set for [OII], we find that Ne([O II])  Ne([S II]) ≈Ne([Cl III])< Ne([Ar IV]).

Optical and IUE Spectra of the Planetary Nebula NGC 7026
We investigated spectroscopic data of the extended planetary nebula NGC7026 in the wavelengths 3700-10,050 Å, secured with the HamiltonEchelle Spectrograph at Lick Observatory. This optical wavelengthspectrum has been analyzed along with the International UltravioletExplorer (IUE) UV spectral data. The diagnostic diagram indicates thatthe planetary nebula has very complex electron densities ofNɛ~3000-10,000 cm-3. The electrontemperatures are relatively low: around Tɛ=8000-9500K, probably as a result of an enhanced heavy elemental cooling. Theelectron temperature variation also indicates that the low-excitationline region is slightly higher than the high-excitation line regionsperhaps as a result of the hardening of escaped UV ionizing photons intothe outer shell part of low-excitation lines. We construct aphotoionization model, with the central star of the planetary nebula ata temperature of Teff=80,000 K, to fit most of the relativelystrong line intensities and the observed physical conditions. With thisphotoionization model construction and with a semiempirical ionizationcorrection method, we derived the elemental abundances of the nebula.Compared to the average or normal planetary nebula, most elementalabundances of He, C, N, O, Ne, S, Ar, and Cl appear to be enhanced.

Planetary nebula distances re-examined: an improved statistical scale
The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.

A reanalysis of chemical abundances in galactic PNe and comparison with theoretical predictions
New determinations of chemical abundances for He, N, O, Ne, Ar and Sare derived for all galactic planetary nebulae (PNe) so far observedwith a relatively high accuracy, in an effort to overcome differences inthese quantities obtained over the years by different authors usingdifferent procedures. These include: ways to correct for interstellarextinction, the atomic data used to interpret the observed line fluxes,the model nebula adopted to represent real objects and the ionizationcorrections for unseen ions. A unique `good quality' classical-typeprocedure, i.e. making use of collisionally excited forbidden lines toderive ionic abundances of heavy ions, has been applied to allindividual sets of observed line fluxes in each specific position withineach PN. Only observational data obtained with linear detectors, andsatisfying some `quality' criteria, have been considered. Suchobservations go from the mid-1970s up to the end of 2001. Theobservational errors associated with individual line fluxes have beenpropagated through the whole procedure to obtain an estimate of theaccuracy of final abundances independent of an author's `prejudices'.Comparison of the final abundances with those obtained in relevantmulti-object studies on the one hand allowed us to assess the accuracyof the new abundances, and on the other hand proved the usefulness ofthe present work, the basic purpose of which was to take full advantageof the vast amount of observations done so far of galactic PNe, handlingthem in a proper homogeneous way. The number of resulting PNe that havedata of an adequate quality to pass the present selection amounts to131. We believe that the new derived abundances constitute a highlyhomogeneous chemical data set on galactic PNe, with realisticuncertainties, and form a good observational basis for comparison withthe growing number of predictions from stellar evolution theory. Owingto the known discrepancies between the ionic abundances of heavyelements derived from the strong collisonally excited forbidden linesand those derived from the weak, temperature-insensitive recombinationlines, it is recognized that only abundance ratios between heavyelements can be considered as satisfactorily accurate. A comparison withtheoretical predictions allowed us to assess the state of the art inthis topic in any case, providing some findings and suggestions forfurther theoretical and observational work to advance our understandingof the evolution of low- and intermediate-mass stars.

Sulfur, Chlorine, and Argon Abundances in Planetary Nebulae. IV. Synthesis and the Sulfur Anomaly
We have compiled a large sample of O, Ne, S, Cl, and Ar abundances thathave been determined for 85 Galactic planetary nebulae in a consistentand homogeneous manner using spectra extending from 3600 to 9600Å. Sulfur abundances have been computed using the near-IR lines of[S III] λλ9069, 9532 along with [S III] temperatures. Wefind average values, expressed logarithmically with a standarddeviation, of log(S/O)=-1.91+/-0.24, log(Cl/O)=-3.52+/-0.16, andlog(Ar/O)=-2.29+/-0.18, numbers consistent with previous studies of bothplanetary nebulae and H II regions. We also find a strong correlationbetween [O III] and [S III] temperatures among planetary nebulae. Inanalyzing abundances of Ne, S, Cl, and Ar with respect to O, we find atight correlation for Ne-O, and loose correlations for Cl-O and Ar-O.All three trends appear to be colinear with observed correlations for HII regions. S and O also show a correlation, but there is a definiteoffset from the behavior exhibited by H II regions and stars. We suggestthat this S anomaly is most easily explained by the existence ofS+3, whose abundance must be inferred indirectly when onlyoptical spectra are available, in amounts in excess of what is predictedby model-derived ionization correction factors in PNe. Finally for thedisk PNe, abundances of O, Ne, S, Cl, and Ar all show gradients whenplotted against Galactocentric distance. The slopes are statisticallyindistinguishable from one another, a result which is consistent withthe notion that the cosmic abundances of these elements evolve inlockstep.

Rings in the haloes of planetary nebulae
We present a search for rings or arcs in the haloes of planetary nebulae(PNe). We discovered such structures in eight PNe, tripling the sampleof PNe with known rings. This shows that, contrary to what was believedto date, the occurrence of mass loss fluctuations with timescales of102-103 yrs at the end of the asymptotic giantbranch phase (AGB) is common. We estimate a lower limit of theoccurrence rate of rings in PN haloes to be ˜35%. Using these newdetections and the cases previously known, we discuss the statisticalproperties of ring systems in PNe haloes. We estimate that the massmodulation producing the rings takes place during the last 10 000 or 20000 yrs of AGB evolution. In PNe, the spacing between rings ranges from<0.01 pc to 0.06 pc, significantly larger than those seen inproto-PNe. This, together with the finding of a possible positivecorrelation of spacing with the post-AGB age of the nebulae, suggeststhat the spacing of the rings increases with time. These properties, aswell as the modest surface brightness amplitudes of rings, areconsistent with the predictions of the dust-driven wind instabilitymodel explored by Meijerink et al. (\cite{Me03}), but do not immediatelyexclude other proposed models.Based on observations obtained at: the 2.5 INT telescope of the IsaacNewton Group and the 2.6 m NOT telescope operated by NOTSA in theSpanish Observatorio del Roque de Los Muchachos of the Instituto deAstrofísica de Canarias; the 3.5 m NTT and the 2.2 MPG/ESO at theEuropean Southern Observatory in Chile; and the NASA/ESA Hubble SpaceTelescope, obtained at the Space Telescope Science Institute, which isoperated by AURA for NASA under contract NAS5-26555.

Pairs of Bubbles in Planetary Nebulae and Clusters of Galaxies
I point to an interesting similarity in the morphology and somenondimensional quantities between pairs of X-ray-deficient bubbles inclusters of galaxies and pairs of optical-deficient bubbles in planetarynebulae (PNs). This similarity leads me to postulate a similar formationmechanism. This postulate is used to strengthen models for PN shaping byjets (or collimated fast winds [CFWs]). The presence of dense materialin the equatorial plane observed in the two classes of bubblesconstrains the jets and CFW activity in PNs to occur while theasymptotic giant branch star still blows its dense wind, or very shortlyafter. I argue that only a stellar companion can account for such jetsand CFWs.

Characteristics of Planetary Nebulae with [WC] Central Stars
We have analyzed the plasma diagnostics (electron densities andtemperatures and abundance ratios), and the kinematics of a large sampleof planetary nebulae around [WC] stars by means of high resolutionspectra. The results have been compared with characteristics ofplanetary nebulae around WELS and non-WR central stars. We find that theproportion of nitrogen rich nebulae is larger in WRPNe than innon-WRPNe. None of the 9 nebulae around WELS in our sample showsN-enrichment. WRPNe have larger expansion velocities and/or largerturbulence than non-WRPNe demonstrating that the mechanical energy ofthe massive [WC] stellar wind largely affects the kinematical behaviorof nebulae. A weak relation between stellar temperature and expansionvelocities has been found for all kind of nebulae, indicating that oldernebulae expand faster. The effect is more important for WRPNe. Thiscould be useful in testing the evolutionary sequence [WC]-late ->[WC]-early, proposed for [WC] stars.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

Quantitative classification of WR nuclei of planetary nebulae
We analyse 42 emission-line nuclei of Planetary Nebulae (PNe), in theframework of a large spectrophotometric survey of [WC] nuclei of PNeconducted since 1994, using low/medium resolution spectra obtained atESO and at OHP. We construct a grid of selected line-intensities(normalized to C Iv-5806 Å= 100) ordered by decreasing ionisationpotential going from 871 to 24 eV. In this grid, the stars appear tobelong clearly to prominent O (hot [WO1-4] types) or C (cooler [WC4-11]types) line-sequences, in agreement with the classification of massiveWR stars applied to Central Stars of Planetary Nebulae (CSPNe) byCrowther et al. \cite{crowther98} (CMB98). We propose 20 selected lineratios and the FWHM of C Iv and C Iii lines as classificationdiagnostics, which agree well with the 7 line ratios and the FWHMproposed by CMB98. This classification based on ionisation is related tothe evolution of the temperature and of the stellar wind, reflecting themass-loss history. In particular, inside the hot [WO4]-class, wediscover four stars showing very broad lines over the whole spectralrange. These stars possibly mark the transition from the initialmomentum-driven phase to the later energy-driven phase of the CSPNealong their evolution from the post-Asymptotic Giant Branch (post-AGB)phase through [WC] late, [WC4] and [WO]-types. The HR diagram and thediagram linking the terminal velocity and the temperature indicatehighly dispersed values of the stellar mass for our sample, around amean mass higher than for normal CSPNe. The distribution of the 42 starsalong the ionisation sequence shows 24% of [WO1-3], 21% of [WO4], 17% of[WC4] hot stars, and 26% of [WC9-11] cool stars. The [WC5-8] classesremain poorly represented (12%). This distribution is confirmed on thebasis of a large compilation of the 127 known emission-lines CSPNe,which represent about 5% of the known PNe.Based on observations obtained at the European Southern Observatory(ESO), La Silla (Chile), and at the Observatoire de Haute-Provence (OHP,France).Table \ref{liste} is only available in electronic form athttp://www.edpsciences.org

The relation between elemental abundances and morphology in planetary nebulae
An investigation of the variation of elemental abundances with planetarynebula morphology is of considerable interest, since it has a bearingupon how such sources are formed, and from which progenitors they areejected. Recent advances in morphological classification now enable usto assess such trends for a statistically significant number of sources.We find, as a result, that the distribution N[log(X/H)] of sources withrespect to elemental abundance (X/H) varies between the differingmorphologies. Circular sources tend to peak towards low abundancevalues, whilst bipolar nebulae (BPNe) peak towards somewhat highervalues. This applies for most elemental species, although it is perhapsleast apparent for oxygen. In contrast, elliptical sources appear todisplay much broader functions N[log(X/H)], which trespass upon thedomains of both circular and elliptical planetary nebulae (PNe).We take these trends to imply that circular sources derive fromlower-mass progenitors, bipolar sources from higher-mass stars, and thatelliptical nebulae derive from all masses of progenitor, high and low.Whilst such trends are also evident in values of mean abundance, they are much less clear. Only in the cases of He/H, N/H,Ne/H and perhaps Ar/H is there evidence for significant abundancedifferences.Certain BPNe appear to possess low abundance ratios He/H and Ar/H, andthis confirms that a few such outflows may arise from lower-massprogenitors. Similarly, we note that ratios are quite modestin elliptical planetary nebulae, and not much different from those forcircular and bipolar PNe; a result that conflicts with the expectationsof at least one model of shell formation.

Winds, Bubbles, and Outflows in Planetary Nebulae
The aim of this work is to highlight the contributions that John Dysonhas made to the study of the interstellar medium in general and, inparticular, to the field of planetary nebulae. I review a fewoutstanding problems regarding the formation and evolution of outflowsin planetary nebulae.

High Velocity Flow Suggested by Wing Components of the Hα Line Profiles in the Selected Planetary Nebulae
Not Available

Abundances of [WC] Central Stars of PN and the Double Dust Chemistry Problem (invited review)
Not Available

WR Central Stars (invited review)
Not Available

The Correlations between Planetary Nebula Morphology and Central Star Evolution: Analysis of the Northern Galactic Sample
Northern Galactic planetary nebulae (PNs) are studied to disclosepossible correlations between the morphology of the nebulae and theevolution of the central stars (CSs). To this end, we have built thebest database available to date, accounting for homogeneity andcompleteness. We use updated statistical distances and an updatedmorphological classification scheme, and we calculate Zanstratemperatures for a large sample of PNs. With our study we confirm thatround, elliptical, and bipolar PNs have different spatial distributionswithin the Galaxy, with average absolute distances to the Galactic planeof 0.73, 0.38, and 0.21 kpc, respectively. We also find evidence thatthe distributions of the CS masses are different across thesemorphological groups, although we do not find that CSs hosted by bipolarPNs are hotter, on average, than CSs within round and elliptical PNs.Our results are in broad agreement with previous analyses, indicatingthat round, elliptical, and bipolar PNs evolve from progenitors indifferent mass ranges and might belong to different stellar populations,as also indicated by the helium and nitrogen abundances of PNs ofdifferent morphology.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Лабуд
Ректацензија:21h06m18.21s
Deклинација:+47°51'05.3"
Apparent магнитуда:13

Каталог и designations:
Proper имена   (Edit)
NGC 2000.0NGC 7026

→ Захтевај још каталога од VizieR