Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1439


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Eridanus - a supergroup in the local Universe?
We examine a possible supergroup in the direction of the Eridanusconstellation using 6dF Galaxy Survey second data release (6dFGS DR2)positions and velocities together with Two-Micron All-Sky Survey andHyper-Lyon-Meudon Extragalactic DAtabase photometry. We perform afriends-of-friends analysis to determine which galaxies are associatedwith each substructure before examining the properties of theconstituent galaxies. The overall structure is made up of threeindividual groups that are likely to merge to form a cluster of mass ~7× 1013Msolar. We conclude that thisstructure is a supergroup. We also examine the colours, morphologies andluminosities of the galaxies in the region with respect to their localprojected surface density. We find that the colours of the galaxiesredden with increasing density, the median luminosities are brighterwith increasing environmental density and the morphologies of thegalaxies show a strong morphology-density relation. The colours andluminosities of the galaxies in the supergroup are already similar tothose of galaxies in clusters; however, the supergroup contains morelate-type galaxies, consistent with its lower projected surface density.Due to the velocity dispersion of the groups in the supergroup, whichare lower than those of clusters, we conclude that the properties of theconstituent galaxies are likely to be a result of merging orstrangulation processes in groups outlying this structure.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Radio Continuum and Far-infrared Emission from the Galaxies in the Eridanus Group
The Eridanus galaxies follow the well-known radio-FIR correlation. Themajority (70%) of these galaxies have their star formation rates belowthat of the Milky Way. The galaxies that have a significant excess ofradio emission are identified as low luminosity AGNs based on theirradio morphologies obtained from the GMRT observations. There are nopowerful AGNs (L20 cm>1023WHz-1) in the group. The twomost far-infrared and radio luminous galaxies in the group have opticaland HI morphologies suggestive of recent tidal interactions. TheEridanus group also has two far-infrared luminous but radio-deficientgalaxies. It is believed that these galaxies are observed within a fewMyr of the onset of an intense star formation episode after beingquiescent for at least a 100 Myr. The upper end of the radio luminositydistribution of the Eridanus galaxies (L20 cm1022WHz-1) isconsistent with that of the field galaxies, other groups, and late-typegalaxies in nearby clusters.

The Centers of Early-Type Galaxies with Hubble Space Telescope. V. New WFPC2 Photometry
We present observations of 77 early-type galaxies imaged with the PC1CCD of the Hubble Space Telescope (HST) WFPC2. ``Nuker-law'' parametricfits to the surface brightness profiles are used to classify the centralstructure into ``core'' or ``power-law'' forms. Core galaxies aretypically rounder than power-law galaxies. Nearly all power-law galaxieswith central ellipticities ɛ>=0.3 have stellar disks,implying that disks are present in power-law galaxies withɛ<0.3 but are not visible because of unfavorable geometry. Afew low-luminosity flattened core galaxies also have disks; these may betransition forms from power-law galaxies to more luminous core galaxies,which lack disks. Several core galaxies have strong isophote twistsinterior to their break radii, although power-law galaxies have interiortwists of similar physical significance when the photometricperturbations implied by the twists are evaluated. Central colorgradients are typically consistent with the envelope gradients; coregalaxies have somewhat weaker color gradients than power-law galaxies.Nuclei are found in 29% of the core galaxies and 60% of the power-lawgalaxies. Nuclei are typically bluer than the surrounding galaxy. Whilesome nuclei are associated with active galactic nuclei (AGNs), just asmany are not; conversely, not all galaxies known to have a low-level AGNexhibit detectable nuclei in the broadband filters. NGC 4073 and 4382are found to have central minima in their intrinsic starlightdistributions; NGC 4382 resembles the double nucleus of M31. In general,the peak brightness location is coincident with the photocenter of thecore to a typical physical scale of <1 pc. Five galaxies, however,have centers significantly displaced from their surrounding cores; thesemay be unresolved asymmetric double nuclei. Finally, as noted byprevious authors, central dust is visible in about half of the galaxies.The presence and strength of dust correlates with nuclear emission;thus, dust may outline gas that is falling into the central black hole.The prevalence of dust and its morphology suggest that dust clouds form,settle to the center, and disappear repeatedly on ~108 yrtimescales. We discuss the hypothesis that cores are created by thedecay of a massive black hole binary formed in a merger. Apart fromtheir brightness profiles, there are no strong differences between coregalaxies and power-law galaxies that demand this scenario; however, therounder shapes of core, their lack of disks, and their reduced colorgradients may be consistent with it.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555. These observations are associated withGO and GTO proposals 5236, 5446, 5454, 5512, 5943, 5990, 5999, 6099,6386, 6554, 6587, 6633, 7468, 8683, and 9107.

Companions to Isolated Elliptical Galaxies: Revisiting the Bothun-Sullivan Sample
We investigate the number of physical companion galaxies for a sample ofrelatively isolated elliptical galaxies. The NASA/IPAC ExtragalacticDatabase (NED) has been used to reinvestigate the incidence of satellitegalaxies for a sample of 34 elliptical galaxies, first investigated byBothun & Sullivan using a visual inspection of Palomar Sky Surveyprints out to a projected search radius of 75 kpc. We have repeatedtheir original investigation using data cataloged in NED. Nine of theseelliptical galaxies appear to be members of galaxy clusters; theremaining sample of 25 galaxies reveals an average of +1.0+/-0.5apparent companions per galaxy within a projected search radius of 75kpc, in excess of two equal-area comparison regions displaced by 150-300kpc. This is significantly larger than the +0.12+/-0.42companions/galaxy found by Bothun & Sullivan for the identicalsample. Making use of published radial velocities, mostly availablesince the completion of the Bothun-Sullivan study, identifies thephysical companions and gives a somewhat lower estimate of +0.4companions per elliptical galaxy. This is still 3 times larger than theoriginal statistical study, but given the incomplete and heterogeneousnature of the survey redshifts in NED, it still yields a firm lowerlimit on the number (and identity) of physical companions. An expansionof the search radius out to 300 kpc, again restricted to sampling onlythose objects with known redshifts in NED, gives another lower limit of4.5 physical companions per galaxy. (Excluding five elliptical galaxiesin the Fornax Cluster, this average drops to 3.5 companions perelliptical.) These physical companions are individually identified andlisted, and the ensemble-averaged radial density distribution of theseassociated galaxies is presented. For the ensemble, the radial densitydistribution is found to have a falloff consistent withρ~R-0.5 out to approximately 150 kpc. For non-FornaxCluster companions the falloff continues out to the 300 kpc limit of thesurvey. The velocity dispersion of these companions is found to reach amaximum of 350 km s-1 at around 120 kpc, after which theyfall at a rate consistent with Keplerian falloff. This falloff may thenindicate the detection of a cut-off in the mass-density distribution inthe elliptical galaxies' dark matter halo at ~100 kpc.

Peculiarities and populations in elliptical galaxies. I. An old question revisited
Morphological peculiarities, as defined from isophote asymmetries andnumber of detected shells, jets or similar features, have been estimatedin a sample of 117 E classified galaxies, and qualified by an ad hocΣ2 index. The overall frequency of ``peculiar'' objects(Pec subsample) is 32.5%. It decreases with the cosmic density of theenvironment, being minimal for the Virgo cluster, the densestenvironment in the sampled volume. This environmental effect is strongerfor galaxies with relatively large Σ2.The Pec subsample objects are compared with ``normal'' objects (Nopsubsample) as regards their basic properties. Firstly, theysystematically deviate from the Fundamental Plane and the Faber-Jacksonrelation derived for the Nop subsample, being too bright for their mass.Secondly, the dust content of galaxies, as estimated from IRAS fluxes,are similar in both subsamples. Third, the same is true of the frequencyof Kinematically Distinct cores (KDC), suggesting that KDC andmorphological peculiarities do not result from the same events in thehistory of E-galaxies.Using the Nop sample alone, we obtain very tight reference relationsbetween stellar population indicators (U-B, B-V, B-R, V-I,Mg2, Hβ, , Mgb) and the central velocitydispersion σ0. The discussion of the residuals of theserelations allows us to classify the Pec galaxies in two families i.e.the YP or NGC 2865 family, and the NP or NGC 3923 one. Galaxies in thefirst group show consistent evidence for a younger stellar populationmixed with the old one, in agreement with classical results (Schweizeret al. \cite{Schweizer1990}; Schweizer & Seitzer\cite{Schweizer1992}). The second group, however, has ``normal``, orreddish, populations. It is remarkable that a fraction (circa 40%) ofmorphologically perturbed objects do not display any signature of ayoung population, either because the event responsible for thepecularity is too ancient, or because it did not produce significantstar formation (or eventually that the young sub-population has highmetallicity).A preliminary attempt is made to interpret the populations of Pecobjects by combining a young Single Stellar Population with a Nopgalaxy, with only limited success, perhaps largely due to uncertaintiesin the SSP indices used.Based in part on observations collected at the Observatoire deHaute-Provence.Figures \ref{fig1}-\ref{fig3} are only available in electronic form athttp://www.edpsciences.orgTable 10 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/833

Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data
We present central velocity dispersions and Mg2 line indicesfor an all-sky sample of ~1178 elliptical and S0 galaxies, of which 984had no previous measures. This sample contains the largest set ofhomogeneous spectroscopic data for a uniform sample of ellipticalgalaxies in the nearby universe. These galaxies were observed as part ofthe ENEAR project, designed to study the peculiar motions and internalproperties of the local early-type galaxies. Using 523 repeatedobservations of 317 galaxies obtained during different runs, the dataare brought to a common zero point. These multiple observations, takenduring the many runs and different instrumental setups employed for thisproject, are used to derive statistical corrections to the data and arefound to be relatively small, typically <~5% of the velocitydispersion and 0.01 mag in the Mg2 line strength. Typicalerrors are about 8% in velocity dispersion and 0.01 mag inMg2, in good agreement with values published elsewhere.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

Redshift-Distance Survey of Early-Type Galaxies: Circular-Aperture Photometry
We present R-band CCD photometry for 1332 early-type galaxies, observedas part of the ENEAR survey of peculiar motions using early-typegalaxies in the nearby universe. Circular apertures are used to tracethe surface brightness profiles, which are then fitted by atwo-component bulge-disk model. From the fits, we obtain the structuralparameters required to estimate galaxy distances using theDn-σ and fundamental plane relations. We find thatabout 12% of the galaxies are well represented by a pure r1/4law, while 87% are best fitted by a two-component model. There are 356repeated observations of 257 galaxies obtained during different runsthat are used to derive statistical corrections and bring the data to acommon system. We also use these repeated observations to estimate ourinternal errors. The accuracy of our measurements are tested by thecomparison of 354 galaxies in common with other authors. Typical errorsin our measurements are 0.011 dex for logDn, 0.064 dex forlogre, 0.086 mag arcsec-2 for<μe>, and 0.09 for mRC,comparable to those estimated by other authors. The photometric datareported here represent one of the largest high-quality and uniformall-sky samples currently available for early-type galaxies in thenearby universe, especially suitable for peculiar motion studies.Based on observations at Cerro Tololo Inter-American Observatory (CTIO),National Optical Astronomy Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation (NSF);European Southern Observatory (ESO); Fred Lawrence Whipple Observatory(FLWO); and the MDM Observatory on Kitt Peak.

Dust properties in early-type galaxies.
Not Available

Globular Cluster Systems and the Missing Satellite Problem: Implications for Cold Dark Matter Models
We analyze the metallicity distributions of globular clusters belongingto 28 early-type galaxies in the survey of Kundu & Whitmore. A MonteCarlo algorithm that simulates the chemical evolution of galaxies thatgrow hierarchically via dissipationless mergers is used to determine themost probable protogalactic mass function for each galaxy. Contrary tothe claims of Kundu & Whitmore, we find that the observedmetallicity distributions are in close agreement with the predictions ofsuch hierarchical formation models. The mass spectrum of protogalacticfragments for the galaxies in our sample has a power-law behavior,n(M)~Mα, with an index of α~=-2. This spectrum isindistinguishable from the mass spectrum of dark matter halos predictedby cold dark matter models for structure formation. We argue that theseprotogalactic fragments-the likely sites of globular cluster formationin the early universe-are the disrupted remains of the ``missing''satellite galaxies predicted by cold dark matter models. Our findingssuggest that the solution to the missing satellite problem is throughthe suppression of gas accretion in low-mass halos after reionization,or via self-interacting dark matter, and argue against models withsuppressed small-scale power or warm dark matter.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample
This paper presents data on the ENEARc subsample of the larger ENEARsurvey of nearby early-type galaxies. The ENEARc galaxies belong toclusters and were specifically chosen to be used for the construction ofa Dn-σ template. The ENEARc sample includes newmeasurements of spectroscopic and photometric parameters (redshift,velocity dispersion, line index Mg2, and the angular diameterdn), as well as data from the literature. New spectroscopicdata are given for 229 cluster early-type galaxies, and new photometryis presented for 348 objects. Repeat and overlap observations withexternal data sets are used to construct a final merged catalogconsisting of 640 early-type galaxies in 28 clusters. Objectivecriteria, based on catalogs of groups of galaxies derived from completeredshift surveys of the nearby universe, are used to assign galaxies toclusters. In a companion paper, these data are used to construct thetemplate Dn-σ distance relation for early-typegalaxies, which has been used to estimate galaxy distances and derivepeculiar velocities for the ENEAR all-sky sample. Based on observationsat Complejo Astronomico El Leoncito, operated under agreement betweenthe Consejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; Cerro Tololo Inter-American Observatory,National Optical Astronomical Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation; the EuropeanSouthern Observatory (ESO), partially under the ESO-ON agreement; theFred Lawrence Whipple Observatory; the Observatório do Pico dosDias, operated by the Laboratório Nacional de Astrofísicaand the MDM Observatory at Kitt Peak.

Relation between dust and radio luminosity in optically selected early type galaxies
We have surveyed an optical/IR selected sample of nearby E/S0 galaxieswith and without nuclear dust structures with the VLA at 3.6 cm to asensitivity of 100 mu Jy. We can construct a Radio Luminosity Function(RLF) of these galaxies to ~ 1019 W Hz-1 and findthat ~ 50% of these galaxies have AGNs at this level. The space densityof these AGNs equals that of starburst galaxies at this luminosity.Several dust-free galaxies have low luminosity radio cores, and theirRLF is not significantly less than that of the dusty galaxies.

The scaling relations of early-type galaxies in clusters. I. Surface photometry in seven nearby clusters
This is the first paper of a series investigating the scaling relationsof early-type galaxies in clusters. Here we illustrate the multi-bandimagery and the image reduction and calibration procedures relative tothe whole sample of 22 clusters at 0.05 <~ z <~ 0.25. We alsopresent detailed surface photometry of 312 early-type galaxies in 7clusters in the first redshift bin, z ≈0.025-0.075. We give for eachgalaxy the complete set of luminosity and geometrical profiles, and anumber of global, photometric and morphological parameters. They havebeen evaluated taking into account the effects of seeing. Internalconsistency checks and comparisons with data in the literature confirmthe quality of our analysis. These data, together with the spectroscopicones presented in the second paper of the series, will provide the localcalibration of the scaling relations. Tables 6, 7a-7g, the colour printsof Figs. 12a-12g AND Figs. 13a-13g are only available in electronic format http://www.edpsciences.com. The complete set of profiles is availableupon request from the authors. Tables 7a-7g are also available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.188.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/387/26

The Colors of Globular Clusters
A compilation has been made of available data on the ratio of the numberof metal-rich ([Fe/H]>-1.0) to metal-poor ([Fe/H]<-1.0) clustersin various globular cluster systems. Among early-type galaxies of typesE, E/S0, and S0, the ratio of blue to red globular clusters is found tovary by almost 2 orders of magnitude. The data suggest that cD galaxieshave the widest range of evolutionary histories. The fraction ofmetal-rich red clusters is largest among early-type galaxies and appearsto decrease toward later Hubble types.

A catalogue and analysis of X-ray luminosities of early-type galaxies
We present a catalogue of X-ray luminosities for 401 early-typegalaxies, of which 136 are based on newly analysed ROSAT PSPC pointedobservations. The remaining luminosities are taken from the literatureand converted to a common energy band, spectral model and distancescale. Using this sample we fit the LX:LB relationfor early-type galaxies and find a best-fit slope for the catalogue of~2.2. We demonstrate the influence of group-dominant galaxies on the fitand present evidence that the relation is not well modelled by a singlepower-law fit. We also derive estimates of the contribution to galaxyX-ray luminosities from discrete-sources and conclude that they provideLdscr/LB~=29.5ergs-1LBsolar-1. Wecompare this result with luminosities from our catalogue. Lastly, weexamine the influence of environment on galaxy X-ray luminosity and onthe form of the LX:LB relation. We conclude thatalthough environment undoubtedly affects the X-ray properties ofindividual galaxies, particularly those in the centres of groups andclusters, it does not change the nature of whole populations.

A synthesis of data from fundamental plane and surface brightness fluctuation surveys
We perform a series of comparisons between distance-independentphotometric and spectroscopic properties used in the surface brightnessfluctuation (SBF) and fundamental plane (FP) methods of early-typegalaxy distance estimation. The data are taken from two recent surveys:the SBF Survey of Galaxy Distances and the Streaming Motions of AbellClusters (SMAC) FP survey. We derive a relation between(V-I)0 colour and Mg2 index using nearly 200galaxies and discuss implications for Galactic extinction estimates andearly-type galaxy stellar populations. We find that the reddenings fromSchlegel et al. for galaxies with E(B-V)>~0.2mag appear to beoverestimated by 5-10 per cent, but we do not find significant evidencefor large-scale dipole errors in the extinction map. In comparison withstellar population models having solar elemental abundance ratios, thegalaxies in our sample are generally too blue at a given Mg2;we ascribe this to the well-known enhancement of the α-elements inluminous early-type galaxies. We confirm a tight relation betweenstellar velocity dispersion σ and the SBF `fluctuation count'parameter N, which is a luminosity-weighted measure of the total numberof stars in a galaxy. The correlation between N and σ is eventighter than that between Mg2 and σ. Finally, we deriveFP photometric parameters for 280 galaxies from the SBF survey data set.Comparisons with external sources allow us to estimate the errors onthese parameters and derive the correction necessary to bring them on tothe SMAC system. The data are used in a forthcoming paper, whichcompares the distances derived from the FP and SBF methods.

The connection between globular cluster systems and the host galaxies
A large number of early-type galaxies are now known to possess blue andred subpopulations of globular clusters. We have compiled a data base of28 such galaxies exhibiting bimodal globular cluster colourdistributions. After converting to a common V-I colour system, weinvestigate correlations between the mean colour of the blue and redsubpopulations with galaxy velocity dispersion. We support previousclaims that the mean colours of the blue globular clusters are unrelatedto their host galaxy. They must have formed rather independently of thegalaxy potential they now inhabit. The mean blue colour is similar tothat for halo globular clusters in our Galaxy and M31. The red globularclusters, on the other hand, reveal a strong correlation with galaxyvelocity dispersion. Furthermore, in well-studied galaxies the redsubpopulation has similar, and possibly identical, colours to the galaxyhalo stars. Our results indicate an intimate link between the redglobular clusters and the host galaxy; they share a common formationhistory. A natural explanation for these trends would be the formationof the red globular clusters during galaxy collapse.

The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances
We report data for I-band surface brightness fluctuation (SBF)magnitudes, (V-I) colors, and distance moduli for 300 galaxies. Thesurvey contains E, S0, and early-type spiral galaxies in the proportionsof 49:42:9 and is essentially complete for E galaxies to Hubblevelocities of 2000 km s-1, with a substantial sampling of Egalaxies out to 4000 km s-1. The median error in distancemodulus is 0.22 mag. We also present two new results from the survey.(1) We compare the mean peculiar flow velocity (bulk flow) implied byour distances with predictions of typical cold dark matter transferfunctions as a function of scale, and we find very good agreement withcold, dark matter cosmologies if the transfer function scale parameterΓ and the power spectrum normalization σ8 arerelated by σ8Γ-0.5~2+/-0.5. Deriveddirectly from velocities, this result is independent of the distributionof galaxies or models for biasing. This modest bulk flow contradictsreports of large-scale, large-amplitude flows in the ~200 Mpc diametervolume surrounding our survey volume. (2) We present adistance-independent measure of absolute galaxy luminosity, N and showhow it correlates with galaxy properties such as color and velocitydispersion, demonstrating its utility for measuring galaxy distancesthrough large and unknown extinction. Observations in part from theMichigan-Dartmouth-MIT (MDM) Observatory.

New Insights from HST Studies of Globular Cluster Systems. I. Colors, Distances, and Specific Frequencies of 28 Elliptical Galaxies
We present an analysis of the globular cluster systems of 28 ellipticalgalaxies using archival WFPC2 images in the V and I bands. The V-I colordistributions of at least 50% of the galaxies appear to be bimodal atthe present level of photometric accuracy. We argue that this isindicative of multiple epochs of cluster formation early in the historyof these galaxies, possibly due to mergers. We also present the firstevidence of bimodality in low-luminosity galaxies and discuss itsimplication on formation scenarios. The mean color of the 28 clustersystems studied by us is V-I=1.04+/-0.04 (0.01) mag corresponding to amean metallicity of Fe/H=-1.0+/-0.19 (0.04). We find that the turnovermagnitudes of the globular cluster luminosity functions (GCLF) of oursample are in excellent agreement with the distance measurements usingother methods and conclude that the accuracy of the GCLF is at least asgood as the surface brightness fluctuation method. The absolutemagnitude of the turnover luminosity of the GCLF isM0V=-7.41 (0.03) in V andM0I=-8.46 (0.03) in I. The mean local specificfrequency of our sample of elliptical galaxies within the WFPC2field-of-view is 2.4+/-1.8 (0.4), considerably higher than the 1.0+/-0.6(0.1) derived for a comparable sample of S0s in a similar analysis. Itshows no obvious correlation with metallicity, host galaxy mass ormembership in a galaxy cluster. The median size of clusters in allgalaxies appears to be remarkably constant at ~2.4 pc. We suggest thatin the future it might be possible to use the sizes of clusters in theinner regions of galaxies as a simple geometrical distance indicator.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedfrom the data Archive at the Space Telescope Science Institute, which isoperated by the Association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555.

Dusty Nuclear Disks and Filaments in Early-Type Galaxies
We examine the dust properties of a nearby distance-limited sample ofearly-type galaxies using WFPC2 of the Hubble Space Telescope. Dust isdetected in 29 out of 67 galaxies (43%), including 12 with small nucleardusty disks. In a separate sample of 40 galaxies biased for thedetection of dust by virtue of their detection in IRAS 100 μm band,dust is found in ~78% of the galaxies, 15 of which contain dusty disks.In those galaxies with detectable dust, the apparent mass of the dustcorrelates with radio and far-infrared luminosity, becoming moresignificant for systems with filamentary dust. A majority of IRAS andradio detections are also associated with dusty galaxies rather thandustless galaxies. This indicates that thermal emission from clumpy,filamentary dust is the main source of the far-IR radiation inearly-type galaxies. Dust in small disklike morphology tends to be wellaligned with the major axis of the host galaxies, while filamentary dustappears to be more randomly distributed with no preference for alignmentwith any major galactic structure. This suggests that, if the dustydisks and filaments have a common origin, the dust originates externallyand requires time to dynamically relax and settle in the galaxypotential in the form of compact disks. More galaxies with visible dustthan without dust display emission lines, indicative of ionized gas,although such nuclear activity does not show a preference for dusty diskover filamentary dust. There appears to be a weak relationship betweenthe mass of the dusty disks and central velocity dispersion of thegalaxy, suggesting a connection with a similar recently recognizedrelationship between the latter and the black hole mass. Based onobservations with the NASA/ESA Hubble Space Telescope, obtained at theSpace Telescope Science Institute, which is operated by the Associationof Universities for Research in Astronomy, Inc., under NASA contractNAS5-26555.

Globular Cluster Systems. II. On the Formation of Old Globular Clusters and Their Sites of Formation
We studied the metal-poor globular cluster populations of a largevariety of galaxies and compared their mean metallicity with theproperties of the host galaxies. For this purpose, we constructed acomprehensive database of old metal-poor globular cluster populations,hosted by 47 galaxies, spanning about 10 mag in absolute brightness. Themean metallicities of the systems are found to be very similar and liein the -1.65<[Fe/H]<=-1.20 range (74% of the population). Usingonly globular cluster systems with more than six objects detected, wefind that 85% of the population are within -1.65<[Fe/H]<=-1.20.The relation between the mean metallicity of the metal-poor globularcluster systems and the absolute V magnitude of their host galaxiespresents a very low slope that includes zero. An analysis of thecorrelation of the mean metallicity of the populations with other galaxyproperties (such as velocity dispersion, metallicity, and environmentdensity) also leads to the conclusion that no strong correlation exists.The lack of correlation with galaxy properties suggests a formation ofall metal-poor globular clusters in very similar gas fragments. A weakcorrelation (to be confirmed) might exist between the mean metallicityof the metal-poor clusters and the host galaxy metallicity. This wouldimply that at least some fragments in which metal-poor globular clustersformed were already embedded in the larger dark matter halo of the finalgalaxy (as opposed to being independent satellites that were accretedlater). Our result suggests a homogeneous formation of metal-poorglobular clusters in all galaxies in typical fragments of masses around109-1010 Msolar with very similarmetallicities, compatible with hierarchical formation scenarios forgalaxies. We further compare the mean metallicities of the metal-poorglobular cluster populations with the typical metallicities ofhigh-redshift objects. If we add the constraint that globular clustersneed a high column density of gas to form, damped Lyα systems arethe most likely sites among the known high-redshift objects for theformation of metal-poor globular cluster populations.

The gas content of peculiar galaxies: Counterrotators and polar rings
This paper studies the global ISM content in a sample of 104 accretinggalaxies, including counterrotators and polar rings, which spans theentire Hubble sequence. The molecular, atomic and hot gas content ofaccretors is compared to a newly compiled sample of normal galaxies. Wepresent results of a small survey of the J=1-0 line of 12COwith the 15 m SEST telescope on a sample of 11 accretors (10counterrotators and 1 polar ring). The SEST sample is enlarged withpublished data from 48 galaxies, for which observational evidence ofcounterrotation in the gas and/or the stars has been found. Furthermore,the available data on a sample of 46 polar ring galaxies has beencompiled. In order to explore the existence of an evolutionary pathlinking the two families of accretors, the gas content ofcounterrotators and polar rings is compared. It was found that thenormalized content of cold gas (Mgas/LB) in polarrings is ~ 1 order of magnitude higher than the reference value derivedfor normal galaxies. The inferred gas masses are sufficient to stabilizepolar rings through self-gravity. In contrast, it was found that thecold gas content of counterrotators is close to normal for all galaxytypes. Although counterrotators and polar rings probably share a commonorigin, the gas masses estimated here confirm that light gas ringsaccreted by future counterrotators may have evolved faster than theself-gravitating structures of polar rings. In this scenario, thetransformation of atomic into molecular gas could be enhanced near thetransition region between the prograde and the retrograde disks,especially in late-type accretors characterized by a high content ofprimordial gas. This is tentatively confirmed in this work: the measuredH2/HI ratio seems larger in counterrotators than in normal orpolar ring galaxies for types later than S0s. Based on observationscollected at SEST telescope, European Southern Observatory, La Silla,Chile. Table 1 is only available in electronic form athttp://www.edpsciences.org

The visible environment of galaxies with counterrotation
In this paper we present a statistical study of the environments of 49galaxies in which there is gas- or stellar-counterrotation. The numberof possible companions in the field (to apparent magnitude 22), theirsize and concentration were considered. All the statistical parameterswere analysed by means of Kolgomorov-Smirnov tests, using a controlsample of 43 galaxies without counterrotation. From our data, nosignificant differences between the counter-rotating and control samplesappear. This is different to Seyfert or radio-loud galaxies which lie inenvironments with a higher density of companions. On the contrary, if aweak tendency exists, for galaxies with gas counterrotation only, it isdiscovered in regions of space where the large scale density of galaxiesis smaller. Our results tend to disprove the hypothesis thatcounterrotation and polar rings derive from a recent interaction with asmall satellite or a galaxy of similar size. To a first approximation,they seem to follow the idea that all galaxies are born through a mergerprocess of smaller objects occurring very early in their life, or thatthey derive from a continuous, non-traumatic infall of gas that formedstars later. Whatever the special machinery is which producescounterrotation or polar rings instead of a co-planar, co-rotatingdistribution of gas and stars, it seems not to be connected to thepresent galaxy density of their environments.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Central Gas Systems of Early-Type Galaxies Traced by Dust Features, Based on the Hubble Space Telescope WFPC2 Archival Images
We investigated the central gas systems of E/S0 galaxies by making useof the WFPC2 images in the Hubble Space Telescope archive. We searchedfor gas systems that were traced by the dust with a new method of makingcolor excess images in F555W-F814W (V-I). Of 25 sample galaxies, wedetected gas systems in 14 galaxies. The dust was newly detected in twogalaxies that were thought to contain no dust based on single-band,prerefurbishment data. The full extents of the gas systems are 0.1-3.5kpc, and the masses of the gas, log Mgas [Msolar],are 4.2-7.2. The active galactic nucleus (AGN) activity is wellcorrelated with the existence of the gas systems. None of galaxieswithout the gas systems show AGN activity. On the other hand, somegalaxies with gas systems show AGN activity; optical AGN activities areshown in five of 11 galaxies in which AGNs are optically studied, andradio activities are shown in six of 14 galaxies. This shows that theAGN activity is driven with the gas system. Based on observations madewith the NASA/ESA Hubble Space Telescope, obtained from the data archiveat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

A Test for Large-Scale Systematic Errors in Maps of Galactic Reddening
Accurate maps of Galactic reddening are important for a number ofapplications, such as mapping the peculiar velocity field in the nearbyuniverse. Of particular concern are systematic errors which vary slowlyas a function of position on the sky, as these would induce spuriousbulk flow. We have compared the reddenings of Burstein & Heiles (BH)and those of Schlegel, Finkbeiner, & Davis (SFD) to independentestimates of the reddening, for Galactic latitudes |b|>10^deg. Ourprimary source of Galactic reddening estimates comes from comparing thedifference between the observed B-V colors of early-type galaxies, andthe predicted B-V color determined from the B-V-Mg_2 relation. We havefitted a dipole to the residuals in order to look for large-scalesystematic deviations. There is marginal evidence for a dipolar residualin the comparison between the SFD maps and the observed early-typegalaxy reddenings. If this is due to an error in the SFD maps, then itcan be corrected with a small (13%) multiplicative dipole term. Weargue, however, that this difference is more likely to be due to a small(0.01 mag) systematic error in the measured B-V colors of the early-typegalaxies. This interpretation is supported by a smaller, independentdata set (globular cluster and RR Lyrae stars), which yields a resultinconsistent with the early-type galaxy residual dipole. BH reddeningsare found to have no significant systematic residuals, apart from theknown problem in the region 230^deg

Globular cluster system erosion and nucleus formation in elliptical galaxies
The radial distribution of globular clusters in galaxies is always lesspeaked to the centre than that of the halo stars. Extending previouswork to a sample of Hubble Space Telescope globular cluster systems inellipticals, we evaluate the number of clusters potentially lost to thegalactic centre as the integrals of the difference between the observedglobular cluster system distribution and the underlying halo lightprofile. In the sample of galaxies examined it is found that the initialpopulations of globular clusters may have been ~30per cent to 50per centricher than now. If these `missing' globular clusters have decayed andhave been partly destroyed in the very central galactic zones, they havecarried there a significant quantity of mass that, plausibly,contributed to the formation and feeding of a massive object therein. Itis relevant to note that the observed correlation between the coreradius of the globular cluster system and the parent galaxy luminositycan be interpreted as a result of evolution.

X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey
For a magnitude-limited optical sample (B_T <= 13.5 mag) ofearly-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upperlimits in the range from 10^36 to 10^44 erg s^-1. For most of thegalaxies no X-ray data have been available until now. On the basis ofthis sample with its full sky coverage, we find no galaxy with anunusually low flux from discrete emitters. Below log (L_B) ~ 9.2L_⊗ the X-ray emission is compatible with being entirely due todiscrete sources. Above log (L_B) ~ 11.2 L_osolar no galaxy with onlydiscrete emission is found. We further confirm earlier findings that L_xis strongly correlated with L_B. Over the entire data range the slope isfound to be 2.23 (+/- 0.12). We also find a luminosity dependence ofthis correlation. Below log L_x = 40.5 erg s^-1 it is consistent with aslope of 1, as expected from discrete emission. Above this value theslope is close to 2, as expected from gaseous emission. Comparing thedistribution of X-ray luminosities with the models of Ciotti et al.leads to the conclusion that the vast majority of early-type galaxiesare in the wind or outflow phase. Some of the galaxies may have alreadyexperienced the transition to the inflow phase. They show X-rayluminosities in excess of the value predicted by cooling flow modelswith the largest plausible standard supernova rates. A possibleexplanation for these super X-ray-luminous galaxies is suggested by thesmooth transition in the L_x--L_B plane from galaxies to clusters ofgalaxies. Gas connected to the group environment might cause the X-rayoverluminosity.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Eridanus
Right ascension:03h44m49.80s
Declination:-21°55'13.0"
Aparent dimensions:2.951′ × 2.818′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1439
HYPERLEDA-IPGC 13738

→ Request more catalogs and designations from VizieR