Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 925



Upload your image

DSS Images   Other Images

Related articles

Scalar potential model of redshift and discrete redshift
On the galactic scale the universe is inhomogeneous and redshift z isoccasionally less than zero. A scalar potential model (SPM) that linksthe galaxy scale z to the cosmological scale z of the Hubble Law ispostulated. Several differences among galaxy types suggest that spiralgalaxies are Sources and that early type, lenticular, and irregulargalaxies are Sinks of a scalar potential field. The morphology-radiusand the intragalactic medium cluster observations support the movementof matter from Source galaxies to Sink galaxies. A cell structure ofgalaxy groups and clusters is proposed to resolve a paradox concerningthe scalar potential like the Olber’s paradox concerning light.For the sample galaxies, the ratio of the luminosity of Source galaxiesto the luminosity of Sink galaxies approaches 2.7 ± 0.1. Anequation is derived from sample data, which is anisotropic andinhomogeneous, relating z of and the distance D to galaxies. Thecalculated z has a correlation coefficient of 0.88 with the measured zfor a sample of 32 spiral galaxies with D calculated using Cepheidvariable stars. The equation is consistent with z < 0 observations ofclose galaxies. At low cosmological distances, the equation reduces to z≈ exp(KD)‑1 ≈ KD, where K is a constant, positive value. Theequation predicts z from galaxies over 18 Gpc distant approaches aconstant value on the order of 500. The SPM of z provides a physicalbasis for the z of particle photons. Further, the SPM qualitativelysuggests the discrete variations in z, which was reported by Tifft[Tifft, W.G., 1997. Astrophy. J. 485, 465] and confirmed by others, areconsistent with the SPM.

Hαkinematics of the SINGS nearby galaxies survey - I*
This is the first part of an Hαkinematics follow-up survey of theSpitzer Infrared Nearby Galaxies Survey (SINGS) sample. The data for28galaxies are presented. The observations were done on three differenttelescopes with Fabry-Perot of New Technology for the Observatoire dumont Megantic (FaNTOmM), an integral field photon-counting spectrometer,installed in the respective focal reducer of each telescope. The datareduction was done through a newly built pipeline with the aim ofproducing the most homogenous data set possible. Adaptive spatialbinning was applied to the data cubes in order to get a constantsignal-to-noise ratio across the field of view. Radial velocity andmonochromatic maps were generated using a new algorithm, and thekinematical parameters were derived using tilted-ring models.

Cepheid Distances to SNe Ia Host Galaxies Based on a Revised Photometric Zero Point of the HST WFPC2 and New PL Relations and Metallicity Corrections
With this paper we continue the preparation for a forthcoming summaryreport of our experiment with the HST to determine the Hubble constantusing Type Ia supernovae as standard candles. Two problems areaddressed. (1) We examine the need for, and determine the value of, thecorrections to the apparent magnitudes of our program Cepheids in the 11previous calibration papers due to sensitivity drifts and chargetransfer effects of the HST WFPC2 camera over the life time of theexperiment from 1992 to 2001. (2) The corrected apparent magnitudes areapplied to all our previous photometric data from which revised distancemoduli are calculated for the eight program galaxies that are parents tothe calibrator Ia supernovae. Two different Cepheid P-L relations areused; one for the Galaxy and one for the LMC. These differ both in slopeand zero point at a fixed period. The procedures for determining theabsorption and reddening corrections for each Cepheid are discussed.Corrections for the effects of metallicity differences between theprogram galaxies and the two adopted P-L relations are derived andapplied. The distance moduli derived here for the eight supernovaeprogram galaxies, and for 29 others, average 0.20 mag fainter (moredistant) than those derived by Gibson et al. and Freedman et al. intheir 2000 and 2001 summary papers for reasons discussed in this paper.The effect on the Hubble constant is the subject of our forthcomingsummary paper.

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

Objective Classification of Spiral Galaxies Having Extended Rotation Curves Beyond the Optical Radius
We carry out an objective classification of four samples of spiralgalaxies having extended rotation curves beyond the optical radius. Amultivariate statistical analysis (viz., principal component analysis[PCA]) shows that about 96% of the total variation is due to twocomponents, one being the combination of absolute blue magnitude andmaximum rotational velocity beyond the optical region and the otherbeing the central density of the halo. On the basis of PCA a fundamentalplane has been constructed that reduces the scatter in the Tully-Fisherrelation up to a maximum of 16%. A multiple stepwise regression analysisof the variation of the overall shape of the rotation curves shows thatit is mainly determined by the central surface brightness, while theshape purely in the outer part of the galaxy (beyond the optical radius)is mainly determined by the size of the galactic disk.

A Comparison of Hα and Stellar Scale Lengths in Virgo and Field Spirals
The scale lengths of the old stars and ionized gas distributions arecompared for similar samples of Virgo Cluster members and field spiralgalaxies via Hα and broad R-band surface photometry. While theR-band and Hα scale lengths are, on average, comparable for thecombined sample, we find significant differences between the field andcluster samples. While the Hα scale lengths of the field galaxiesare a factor of 1.14+/-0.07 longer, on average, than their R-band scalelengths, the Hα scale lengths of Virgo Cluster members are, onaverage, 20% smaller than their R-band scale lengths. Furthermore, inVirgo, the scale length ratios are correlated with the size of thestar-forming disk: galaxies with smaller overall Hα extents alsoshow steeper radial falloff of star formation activity. At the sametime, we find no strong trends in scale length ratio as a function ofother galaxy properties, including galaxy luminosity, inclination,morphological type, central R-band light concentration, or bar type. Ourresults for Hα emission are similar to other results for dustemission, suggesting that Hα and dust have similar distributions.The environmental dependence of the Hα scale length placesadditional constraints on the evolutionary process(es) that cause gasdepletion and a suppression of the star formation rate in clusters ofgalaxies.

The extragalactic Cepheid bias: a new test using the period-luminosity-color relation
We use the Period-Luminosity-Color relation (PLC) for Cepheids to testfor the existence of a bias in extragalactic distances derived from theclassical Period-Luminosity (PL) relation. We calculate the parametersof the PLC using several galaxies observed with the Hubble SpaceTelescope and show that this calculation must be conducted with a PLCwritten in a form where the parameters are independent. The coefficientsthus obtained are similar to those derived from theoretical models.Calibrating with a few unbiased galaxies, we apply this PLC to allgalaxies of the Hubble Space Telescope Key Program (HSTKP) and comparethe distance moduli with those published by the HSTKP team. The newdistance moduli are larger (more exactly, the larger the distance thelarger the difference), consistent with a bias. Further, the bias trendthat is observed is the same previously obtained from two independentmethods based either on the local Hubble law or on a theoretical modelof the bias. The results are quite stable but when we force the PLCrelation closer to the classical PL relation by using unrealisticparameters, the agreement with HSTKP distance moduli is retrieved. Thisalso suggests that the PL relation leads to biased distance moduli. Thenew distance moduli reduce the scatter in the calibration of theabsolute magnitude of supernovae SNIa at their maximum. This may alsosuggest that the relation between the amplitude at maximum and the decayof the light curve Δ m15 may not be as strong asbelieved.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

Massive star formation in the central regions of spiral galaxies
Context: . The morphology of massive star formation in the centralregions of galaxies is an important tracer of the dynamical processesthat govern the evolution of disk, bulge, and nuclear activity. Aims. Wepresent optical imaging of the central regions of a sample of 73 spiralgalaxies in the Hα line and in optical broad bands, and deriveinformation on the morphology of massive star formation. Methods. Weobtained images with the William Herschel Telescope, mostly at a spatialresolution of below one second of arc. For most galaxies, no Hαimaging is available in the literature. We outline the observing anddata reduction procedures, list basic properties, and present the I-bandand continuum-subtracted Hα images. We classify the morphology ofthe nuclear and circumnuclear Hα emission and explore trends withhost galaxy parameters. Results. We confirm that late-type galaxies havea patchy circumnuclear appearance in Hα, and that nuclear ringsoccur primarily in spiral types Sa-Sbc. We identify a number ofpreviously unknown nuclear rings, and confirm that nuclear rings arepredominantly hosted by barred galaxies. Conclusions. Other than instimulating nuclear rings, bars do not influence the relative strengthof the nuclear Hα peak, nor the circumnuclear Hα morphology.Even considering that our selection criteria led to an over-abundance ofgalaxies with close massive companions, we do not find any significantinfluence of the presence or absence of a close companion on therelative strength of the nuclear Hα peak, nor on the Hαmorphology around the nucleus.

How large are the bars in barred galaxies?
I present a study of the sizes (semimajor axes) of bars in discgalaxies, combining a detailed R-band study of 65 S0-Sb galaxies withthe B-band measurements of 70 Sb-Sd galaxies from Martin (1995). As hasbeen noted before with smaller samples, bars in early-type (S0-Sb)galaxies are clearly larger than bars in late-type (Sc-Sd) galaxies;this is true both for relative sizes (bar length as fraction ofisophotal radius R25 or exponential disc scalelength h) andabsolute sizes (kpc). S0-Sab bars extend to ~1-10 kpc (mean ~ 3.3 kpc),~0.2-0.8R25 (mean ~ 0.38R25) and ~0.5-2.5h (mean ~1.4h). Late-type bars extend to only ~0.5-3.5 kpc,~0.05-0.35R25 and 0.2-1.5h their mean sizes are ~1.5 kpc, ~0.14R25 and ~0.6h. Sb galaxies resemble earlier-type galaxiesin terms of bar size relative to h; their smallerR25-relative sizes may be a side effect of higher starformation, which increases R25 but not h. Sbc galaxies form atransition between the early- and late-type regimes. For S0-Sbcgalaxies, bar size correlates well with disc size (both R25and h); these correlations are stronger than the known correlation withMB. All correlations appear to be weaker or absent forlate-type galaxies; in particular, there seems to be no correlationbetween bar size and either h or MB for Sc-Sd galaxies.Because bar size scales with disc size and galaxy magnitude for mostHubble types, studies of bar evolution with redshift should selectsamples with similar distributions of disc size or magnitude(extrapolated to present-day values); otherwise, bar frequencies andsizes could be mis-estimated. Because early-type galaxies tend to havelarger bars, resolution-limited studies will preferentially find bars inearly-type galaxies (assuming no significant differential evolution inbar sizes). I show that the bars detected in Hubble Space Telescope(HST) near-infrared(IR) images at z~ 1 by Sheth et al. have absolutesizes consistent with those in bright, nearby S0-Sb galaxies. I alsocompare the sizes of real bars with those produced in simulations anddiscuss some possible implications for scenarios of secular evolutionalong the Hubble sequence. Simulations often produce bars as large as(or larger than) those seen in S0-Sb galaxies, but rarely any as smallas those in Sc-Sd galaxies.

GHASP: an Hα kinematic survey of spiral and irregular galaxies - IV. 44 new velocity fields. Extension, shape and asymmetry of Hα rotation curves
We present Fabry-Perot observations obtained in the frame of the GHASPsurvey (Gassendi HAlpha survey of SPirals). We have derived the Hαmap, the velocity field and the rotation curve for a new set of 44galaxies. The data presented in this paper are combined with the datapublished in the three previous papers providing a total number of 85 ofthe 96 galaxies observed up to now. This sample of kinematical data hasbeen divided into two groups: isolated (ISO) and softly interacting(SOFT) galaxies. In this paper, the extension of the Hα discs, theshape of the rotation curves, the kinematical asymmetry and theTully-Fisher relation have been investigated for both ISO and SOFTgalaxies. The Hα extension is roughly proportional toR25 for ISO as well as for SOFT galaxies. The smallestextensions of the ionized disc are found for ISO galaxies. The innerslope of the rotation curves is found to be correlated with the centralconcentration of light more clearly than with the type or thekinematical asymmetry, for ISO as well as for SOFT galaxies. The outerslope of the rotation curves increases with the type and with thekinematical asymmetry for ISO galaxies but shows no special trend forSOFT galaxies. No decreasing rotation curve is found for SOFT galaxies.The asymmetry of the rotation curves is correlated with themorphological type, the luminosity, the (B-V) colour and the maximalrotational velocity of galaxies. Our results show that the brightest,the most massive and the reddest galaxies, which are fast rotators, arethe least asymmetric, meaning that they are the most efficient withwhich to average the mass distribution on the whole disc. Asymmetry inthe rotation curves seems to be linked with local star formation,betraying disturbances of the gravitational potential. The Tully-Fisherrelation has a smaller slope for ISO than for SOFT galaxies.

BHαBAR: big Hα kinematical sample of barred spiral galaxies - I. Fabry-Perot observations of 21 galaxies
We present the Hα gas kinematics of 21 representative barredspiral galaxies belonging to the BHαBAR sample. The galaxies wereobserved with FaNTOmM, a Fabry-Perot integral-field spectrometer, onthree different telescopes. The three-dimensional data cubes wereprocessed through a robust pipeline with the aim of providing the mosthomogeneous and accurate data set possible useful for further analysis.The data cubes were spatially binned to a constant signal-to-noiseratio, typically around 7. Maps of the monochromatic Hα emissionline and of the velocity field were generated and the kinematicalparameters were derived for the whole sample using tilted-ring models.The photometrical and kinematical parameters (position angle of themajor axis, inclination, systemic velocity and kinematical centre) arein relative good agreement, except perhaps for the later-type spirals.

Neon abundance in discs of spiral galaxies.
Not Available

First Results from THINGS: The HI Nearby Galaxy Survey
We describe The HI Nearby Galaxy Survey (THINGS), the largestprogramever undertaken at the Very Large Array to perform 21-cm HIobservations of thehighest quality (˜ 7'', ≤ 5 km s^{-1}resolution) ofnearby galaxies. The goal of THINGS is to investigatekeycharacteristics related to galaxy morphology, star formation andmassdistribution across the Hubble sequence. A sample of 34 objectswithdistances between 3 and 10 Mpc will be observed, covering a widerangeof evolutionary stages and properties. Data from THINGSwillcomplement SINGS, the Spitzer Infrared Nearby Galaxy Survey. Forthe THINGS sample, high-quality observations at comparable resolutionwillthus be available from the X-ray regime through to the radio partofthe spectrum. THINGS data can be used to investigate issues such asthesmall-scale structure of the ISM, its three-dimensional structure,the(dark) matter distribution and processes leading to starformation. Todemonstrate the quality of the THINGS data products, wepresent someprelimary HI maps here of four galaxies from the THINGSsample.

Infrared Spectral Energy Distributions of Nearby Galaxies
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out acomprehensive multiwavelength survey on a sample of 75 nearby galaxies.The 1-850 μm spectral energy distributions (SEDs) are presented usingbroadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. Theinfrared colors derived from the globally integrated Spitzer data aregenerally consistent with the previous generation of models that weredeveloped using global data for normal star-forming galaxies, althoughsignificant deviations are observed. Spitzer's excellent sensitivity andresolution also allow a detailed investigation of the infrared SEDs forvarious locations within the three large, nearby galaxies NGC 3031(M81), NGC 5194 (M51), and NGC 7331. A wide variety of spectral shapesis found within each galaxy, especially for NGC 3031, the closest of thethree targets and thus the galaxy for which the smallest spatial scalescan be explored. Strong correlations exist between the local starformation rate and the infrared colors fν(70μm)/fν(160 μm) and fν(24μm)/fν(160 μm), suggesting that the 24 and 70 μmemission are useful tracers of the local star formation activity level.Preliminary evidence indicates that variations in the 24 μm emission,and not variations in the emission from polycyclic aromatic hydrocarbonsat 8 μm, drive the variations in the fν(8.0μm)/fν(24 μm) colors within NGC 3031, NGC 5194, andNGC 7331. If the galaxy-to-galaxy variations in SEDs seen in our sampleare representative of the range present at high redshift, thenextrapolations of total infrared luminosities and star formation ratesfrom the observed 24 μm flux will be uncertain at the factor of 5level (total range). The corresponding uncertainties using theredshifted 8.0 μm flux (e.g., observed 24 μm flux for a z=2source) are factors of 10-20. Considerable caution should be used wheninterpreting such extrapolated infrared luminosities.

Secular Evolution via Bar-driven Gas Inflow: Results from BIMA SONG
We present an analysis of the molecular gas distributions in the 29barred and 15 unbarred spirals in the BIMA CO (J=1-0) Survey of NearbyGalaxies (SONG). For galaxies that are bright in CO, we confirm theconclusion by Sakamoto et al. that barred spirals have higher moleculargas concentrations in the central kiloparsec. The SONG sample alsoincludes 27 galaxies below the CO brightness limit used by Sakamoto etal. Even in these less CO-bright galaxies we show that high central gasconcentrations are more common in barred galaxies, consistent withradial inflow driven by the bar. However, there is a significantpopulation of early-type (Sa-Sbc) barred spirals (6 of 19) that have nomolecular gas detected in the nuclear region and have very little out tothe bar corotation radius. This suggests that in barred galaxies withgas-deficient nuclear regions, the bar has already driven most of thegas within the bar corotation radius to the nuclear region, where it hasbeen consumed by star formation. The median mass of nuclear moleculargas is over 4 times higher in early-type bars than in late-type (Sc-Sdm)bars. Since previous work has shown that the gas consumption rate is anorder of magnitude higher in early-type bars, this implies that theearly types have significantly higher bar-driven inflows. The loweraccretion rates in late-type bars can probably be attributed to theknown differences in bar structure between early and late types. Despitethe evidence for bar-driven inflows in both early and late Hubble-typespirals, the data indicate that it is highly unlikely for a late-typegalaxy to evolve into an early type via bar-induced gas inflow.Nonetheless, secular evolutionary processes are undoubtedly present, andpseudobulges are inevitable; evidence for pseudobulges is likely to beclearest in early-type galaxies because of their high gas inflow ratesand higher star formation activity.

The Opacity of Spiral Galaxy Disks. IV. Radial Extinction Profiles from Counts of Distant Galaxies Seen through Foreground Disks
Dust extinction can be determined from the number of distant fieldgalaxies seen through a spiral disk. To calibrate this number for thecrowding and confusion introduced by the foreground image,González et al. and Holwerda et al. developed the Synthetic FieldMethod (SFM), which analyzes synthetic fields constructed by addingvarious deep exposures of unobstructed background fields to thecandidate foreground galaxy field. The advantage of the SFM is that itgives the average opacity for the area of a galaxy disk without makingassumptions about either the distribution of absorbers or of the diskstarlight. However, it is limited by poor statistics on the survivingfield galaxies, hence the need to combine a larger sample of fields.This paper presents the first results for a sample of 32 deep HubbleSpace Telescope (HST)/WFPC2 archival fields of 29 spiral galaxies. Theradial profiles of average dust extinction in spiral galaxies based oncalibrated counts of distant field galaxies is presented here, both forindividual galaxies and for composites from our sample. The effects ofinclination, spiral arms, and Hubble type on the radial extinctionprofile are discussed. The dust opacity of the disk apparently arisesfrom two distinct components: an optically thicker (AI=0.5-4mag) but radially dependent component associated with the spiral armsand a relatively constant optically thinner disk (AI~0.5mag). These results are in complete agreement with earlier work onocculted galaxies. The early-type spiral disks in our sample show lessextinction than the later types. Low surface brightness galaxies, andpossibly Sd's, appear effectively transparent. The average color of thefield galaxies seen through foreground disks does not appear to changewith radius or opacity. This gray behavior is most likely due to thepatchy nature of opaque clouds. The average extinction of a radialannulus and its average surface brightness seem to correlate for thebrighter regions. This leads to the conclusion that the brighter partsof the spiral disk, such as spiral arms, are also the ones with the mostextinction associated with them.

The opacity of spiral galaxy disks. VI. Extinction, stellar light and color
In this paper we explore the relation between dust extinction andstellar light distribution in disks of spiral galaxies. Extinctioninfluences our dynamical and photometric perception of disks, since itcan distort our measurement of the contribution of the stellarcomponent. To characterize the total extinction by a foreground disk,González et al. (1998, ApJ, 506, 152) proposed the "SyntheticField Method" (SFM), which uses the calibrated number of distantgalaxies seen through the foreground disk as a direct indication ofextinction. The method is described in González et al. (1998,ApJ, 506, 152) and Holwerda et al. (2005a, AJ, 129, 1381). To obtaingood statistics, the method was applied to a set of HST/WFPC2 fields(Holwerda et al. 2005b, AJ, 129, 1396) and radial extinction profileswere derived, based on these counts. In the present paper, we explorethe relation of opacity with surface brightness or color from 2MASSimages, as well as the relation between the scalelengths for extinctionand light in the I band. We find that there is indeed a relation betweenthe opacity (AI) and the surface brightness, particularly atthe higher surface brightnesses. No strong relation between nearinfrared (H-J, H-K) color and opacity is found. The scalelengths of theextinction are uncertain for individual galaxies but seem to indicatethat the dust distribution is much more extended than the stellar light.The results from the distant galaxy counts are also compared to thereddening derived from the Cepheids light-curves (Freedman et al. 2001,ApJ, 553, 47). The extinction values are consistent, provided theselection effect against Cepheids with higher values of AI istaken into account. The implications from these relations for diskphotometry, M/L conversion and galaxy dynamical modeling are brieflydiscussed.

The opacity of spiral galaxy disks. V. Dust opacity, HI distributions and sub-mm emission
The opacity of spiral galaxy disks, from counts of distant galaxies, iscompared to HI column densities. The opacity measurements are calibratedusing the "Synthetic Field Method" from González et al. (1998,ApJ, 506, 152), Holwerda et al. (2005a, AJ, 129, 1381). When comparedfor individual disks, the HI column density and dust opacity do not seemto be correlated as HI and opacity follow different radial profiles. Toimprove statistics, an average radial opacity profile is compared to anaverage HI profile. Compared to dust-to-HI estimates from theliterature, more extinction is found in this profile. This differencemay be accounted for by an underestimate of the dust in earliermeasurements due to their dependence on dust temperature. Since the SFMis insensitive to the dust temperature, the ratio between the SFMopacity and HI could very well be indicative of the true ratio. Earlierclaims for a radially extended cold dust disk were based on sub-mmobservations. A comparison between sub-mm observations and counts ofdistant galaxies is therefore desirable. We present the best currentexample of such a comparison, M 51, for which the measurements seem toagree. However, this remains an area where improved counts of distantgalaxies, sub-mm observations and our understanding of dust emissivityare needed.

The extragalactic Cepheid bias: significant influence on the cosmic distance scale
The unique measurements with the Hubble Space Telescope of Cepheidvariable stars in nearby galaxies led to extragalactic distances thatmade the HST Key Project conclude that the Hubble constant isH0 = 72 km s-1 Mpc-1. The idea thatH0 is now known is widely spread among the astronomicalcommunity. Some time ago, we suggested that a strong selection effectmay still exist in the Cepheid method, resulting in too short distances.Using a model similar to traditional bias corrections, we deduce herenew estimates of distances from HST and previous ground-basedobservations which are both affected by this effect, showing the sametrend which starts at different distances. The recent measurement of M83 with the VLT is unbiased. Revisiting the calibration of HSTKP's withour new scale, makes long-range distance criteria more concordant andreduces the value of H0 to ≈60 km s-1Mpc-1. Locally, the corrected Cepheid distances giveHlocal=56 km s-1 Mpc-1 and reduce thevelocity dispersion in the Hubble flow. These numbers are indicative ofthe influence of the suggested Cepheid bias in the context of the HSTKPstudies and are not final values.

A survey for OB associations in the Sculptor Group spiral galaxy NGC 7793
We report on the results from application of an objective algorithm(PLC) to find OB associations, to B and V images of the Sculptor spiralgalaxy NGC 7793, which were obtained with the ESO VLT and FORSinstrument and basically cover the entire spatial extent of the galaxy.We detected 148 associations. Statistical tests show that less than 6 ofthese detections are caused by randomly concentrated blue stars. In thesize distribution, a sharp peak is observed at a value of about 35microradians, which corresponds to a linear diameter of 135 pc, assuminga distance of 3.91 Mpc to the galaxy. We also find 25 much largerobjects. A second application of the PLC technique shows that 20 of themare stellar complexes consisting of multiple sub-associations withtypical sizes on the order of 130 pc. A comparison of the sizedistribution of the detected OB associations in NGC 7793 with observeddistributions in other galaxies suggests that the conditions in twoSculptor Group galaxies (NGC 300 and NGC 7793) favour the formation oflarge associations. We provide a catalog giving coordinates and physicalparameters for all the associations and stellar complexes we have foundin our survey.

Abundance gradients in a sample of barred spiral galaxies
We used photoionization models in order to reproduce the observedgradients of emission-line ratios for H II regions located in the normalspiral galaxy M 101 and in three barred spiralgalaxies, namely NGC 1365, NGC925, and NGC 1073. The behavior of thefollowing nebular parameters across the disk of these galaxies wasdetermined: temperature of the ionizing star (T_eff), ionizationparameter (U), and the abundance ratios O/H, N/O, and S/O. Our O/Hpredictions were found to be consistent with some empirical abundancedeterminations, but are overestimated by a factor of 0.1-0.4 dex whencompared to the direct abundance determinations. NGC1073 seems to be overabundant in nitrogen compared to otherspiral galaxies. No gradient of S/O was found in the studied galaxies,and we derived a positive T_eff gradient of triangle T_eff/triangle R =(400 ± 112) K kpc-1 and U ranging from -3.0 to -2.3.The N/O vs. O/H diagram in general is consistent with chemical evolutionmodels that assume that the nitrogen synthesis has both a primary and asecondary component compared to oxygen. However, a very strong N/Odependence on the O/H at high abundance was found.

New distances of unresolved dwarf elliptical galaxies in the vicinity of the Local Group
We present Surface Brightness Fluctuation distances of nine early-typedwarf galaxies and the S0 galaxy NGC 4150 in the Local Volume based ondeep B- and R-band CCD images obtained with the 2.56 m Nordic OpticalTelescope. Typically, six stellar fields at various galactocentricdistances have been chosen for each galaxy as appropriately free offoreground stars and other contaminants, and Fourier analysed todetermine the distances, which are found to lie in the range of 3 to 16Mpc. The SBF method is thus demonstrated to efficiently measuredistances from the ground with mid-aperture telescopes for galaxies forwhich only the tip of the red giant branch method in combination withthe Hubble Space Telescope has been available until now. We obtained thefollowing distance moduli: 28.11 ± 0.15 mag (or 4.2 ± 0.3Mpc) for UGC 1703, 27.61 ± 0.17 mag (or 3.3 ± 0.3 Mpc) forKDG 61, 29.00 ± 0.27 mag (or 6.3 ± 0.8 Mpc) for UGCA 200,27.74 ± 0.18 mag (or 3.5 ± 0.3 Mpc) for UGC 5442, 30.22± 0.17 mag (or 11.1 ± 0.9 Mpc) for UGC 5944, 30.79± 0.11 mag (or 14.4 ± 0.7 Mpc) for NGC 4150, 31.02± 0.25 mag (or 16.0 ± 1.9 Mpc) for BTS 128, 29.27 ±0.16 mag (or 7.1 ± 0.6 Mpc) for UGC 7639, 30.19 ± 0.23 mag(or 10.9 ± 1.2 Mpc) for UGC 8799 with an alternative distance of30.61 ± 0.26 mag (or 13.2 ± 1.7 Mpc), and 29.60 ±0.20 mag (or 8.3 ± 0.8 Mpc) for UGC 8882.

Distribution of the oxygen abundance over the discs of eight spiral galaxies
Oxygen abundances in H II regions of eight spiral galaxies are derivedthrough the p-method using published spectrophotometric data (314spectra of H II regions in eight spiral galaxies). The values of theradial oxygen abundance gradients were determined. The search for aglobal asymmetry in oxygen abundance distributions over the disks ofgalaxies was carried out. We do not find a significant signs of globalasymmetry with one exception. In the galaxy NGC 2903, a compact areawith several H II regions is revealed in which the oxygen abundance isconsiderably less than the average oxygen abundance for the samedistance from the galaxy centre.

HI and Galaxy Formation in Loose Groups
Models of hierarchical galaxy formation predict that large numbers oflow-mass, dark matter halos remain around galaxies today. These modelspredict an order of magnitude more halos than observed stellarsatellites in the Local Group. One possible solution to this discrepancyis that the high-velocity clouds (HVCs) around the Milky Way may beassociated with the excess dark matter halos and be the gaseous remnantsof the galaxy formation process. If this is the case, then analogues tothe HVCs should be visible in other groups. In this paper, I review theobservations of HI clouds lacking stars around other galaxies and ingroups, present early results from our HI survey of loose groupsanalogous to the Local Group, and discuss implications for the nature ofHVCs and galaxy formation.

[OIII]/[NII] as an abundance indicator at high redshift
Among `empirical' methods of estimating oxygen abundances inextragalactic HII regions, the use of the ratio of nebular lines of[OIII] and [NII], first introduced by Alloin et al., is reappraised withmodern calibration data and shown to have certain advantages overR23≡ ([OII]+[OIII])/Hβ and N2≡[NII]λ6583/Hα, particularly when applied tostar-forming galaxies at high redshifts.

The dispersion in the Cepheid period-luminosity relation and the consequences for the extragalactic distance scale
Using published Hubble Space Telescope (HST) Cepheid data from 25galaxies, we have found a correlation between the dispersion in theCepheid period-luminosity (P-L) relation and host galaxy metallicity,which is significant at the ~3σ level in the V band. In the I bandthe correlation is less significant, although the tighter intrinsicdispersion of the P-L relation in I may make it harder to detect such acorrelation in the HST sample. One possibility is that low metallicitygalaxies have smaller metallicity gradients than high metallicitygalaxies; if the Cepheid P-L relation has a significant dependence onmetallicity then this might explain the higher P-L dispersion in thehigher metallicity galaxies. A second possibility is that the increasedP-L dispersion is driven by metallicity dispersion but now due to arelation between metallicity and Cepheid colour rather than luminosity.A third possibility is that the increased P-L dispersion is caused by anincrease in the width of the instability strip with metallicity.Whatever the explanation, the high observed dispersions in the HSTCepheid P-L relations have the important consequence that the bias dueto incompleteness in the P-L relation at faint magnitudes is moresignificant than previously thought. Using a maximum likelihoodtechnique which takes into account the effect on the P-L relations oftruncation by consistently defined magnitude completeness limits, werederive the Cepheid distances to the 25 galaxies. In the case of thegalaxies with the highest P-L dispersion at the largest distances, wefind that the published distance modulus underestimates the truedistance modulus by up to ~0.5 mag.When both metallicity and magnitude incompleteness corrections are made,a scale error in the published Cepheid distances is seen in the sensethat the published distance moduli are increasingly underestimated atlarger distances. This results in the average distance modulus to thefour galaxies in the Virgo cluster core increasing from(m-M)0= 31.2 +/- 0.19 to (m-M)0= 31.4 +/- 0.19 ifthe γVI=-0.24 mag dex-1 metallicitycorrection of Kennicutt et al. is assumed. For the 18 HST galaxies withgood Tully-Fisher (TF) distances and (m-M)0 > 29.5 theCepheid-TF distance modulus average residual increases from 0.44 +/-0.09 to 0.63 +/- 0.1 mag with γVI=-0.24. This indicatesa significant scale error in TF distances, which reduces the previousPierce & Tully TF estimate of H0= 85 +/- 10 kms-1 Mpc-1 to H0= 63 +/- 7 kms-1 Mpc-1, assuming γVI=-0.24 anda still uncertain Virgo infall model. Finally, for the eight HSTgalaxies with Type Ia supernovae (SNIa), the metallicity andincompleteness corrected Cepheid distances marginally suggest there maybe a metallicity dependence of SNIa peak luminosity in the sense thatmetal-poor hosts have lower luminosity SNIa. Thus, SNIa Hubble diagramestimates of both H0 and q0 may therefore alsorequire significant corrections for metallicity, once the exact sizes ofthe Cepheid metallicity corrections become better established.

Star Formation and the Kinematics of Gas in the Disk of NGC 628
The radial profile of the star-formation rate (SFR) in the galaxy NGC628 is shown to be modulated by a spiral-density wave. The radialprofile of the velocity of gas inflow into the spiral arm is similar tothe radial distribution of the surface density of the SFR. The positionof the corotation resonance is determined along with other parameters ofthe spiral-density wave via a Fourier analysis of the azimuthaldistribution of the observed radial velocities in annular zones of thedisk of NGC 628. The radial profile of the surface density of the SFR isdetermined using the empirical SFR—linear size relation forstar-formation complexes (giant HII regions) and measurements of thecoordinates, Hα fluxes, and the sizes of HII regions in NGC 628.

Studies of Extragalactic Formaldehyde and Radio Recombination Lines
We present the most sensitive and extensive survey yet performed ofextragalactic H2CO 6 cm (4.829 GHz) emission/absorption.Sixty-two sources were observed with the C-band system of the AreciboTelescope to a 1 σ rms noise level of ~0.3 mJy. We report a newdetection of H2CO 6 cm absorption toward NGC 520 and theconfirmation of H2CO 6 cm absorption toward several sources.We report confirmation of H2CO 6 cm emission toward the OHmegamasers Arp 220, IC 860, and IRAS 15107+0724. At present these arethe only extragalactic H2CO 6 cm emitters independentlyconfirmed. A characterization of the properties of formaldehydeabsorbers and emitters based on infrared properties of the galaxies isdiscussed. We also conducted a simultaneous survey of the H110αhydrogen recombination line toward a sample of 53 objects. We report thedetection of H110α toward the giant extragalactic H II region NGC604 in M33.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:02h27m16.80s
Aparent dimensions:10.471′ × 5.754′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 925

→ Request more catalogs and designations from VizieR