Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 7008



Upload your image

DSS Images   Other Images

Related articles

Time variation of radial gradients in the Galactic disk: electron temperatures and abundances
Aims.We investigate the electron temperature gradient in the galacticdisk as measured by young HII regions on the basis of radiorecombination lines and the corresponding gradient in planetary nebulae(PN) based on [OIII] electron temperatures. The main goal is toinvestigate the time evolution of the electron temperature gradient andof the radial abundance gradient, which is essentially a mirror image ofthe temperature gradient. Methods: The recently derived electrontemperature gradient from radio recombination lines in HII regions iscompared with a new determination of the corresponding gradient fromplanetary nebulae for which the progenitor star ages have beendetermined. Results: The newly derived electron temperature gradientfor PN with progenitor stars with ages in the 4-5 Gyr range is muchsteeper than the corresponding gradient for HII regions. These electrontemperature gradients are converted into O/H gradients in order to makecomparisons with previous estimates of the flattening rate of theabundance gradient. Conclusions: .It is concluded that the O/H gradienthas flattened out in the past 5 Gyr at a rate of about 0.0094 dexkpc-1 Gyr-1, in good agreement with our previousestimates.

Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way
This paper presents a homogeneous study of abundances in a sample of 79northern Galactic planetary nebulae (PNe) whose morphological classeshave been uniformly determined. Ionic abundances and plasma diagnosticswere derived from selected optical line strengths in the literature, andelemental abundances were estimated with the ionization correctionfactor developed by Kingsbourgh & Barlow in 1994. We compare theelemental abundances to the final yields obtained from stellar evolutionmodels of low- and intermediate-mass stars, and we confirm that mostbipolar PNe have high nitrogen and helium abundance and are the likelyprogeny of stars with main-sequence mass greater than 3Msolar. We derive =0.27 and discuss the implication of such ahigh ratio in connection with the solar neon abundance. We determine theGalactic gradients of oxygen and neon and foundΔlog(O/H)/ΔR=-0.01 dex kpc-1 andΔlog(Ne/H)/ΔR=-0.01 dex kpc-1. These flat PNgradients are irreconcilable with Galactic metallicity gradientsflattening with time.

Multi-aperture photometry of extended IR sources with ISOPHOT. I. The nature of extended IR emission of planetary Nebulae
Context: .ISOPHOT multi-aperture photometry is an efficient method toresolve compact sources or to detect extended emission down torelatively faint levels with single detectors in the wavelength range 3to 100 μm. Aims: .Using ISOPHOT multi-aperture photometry andcomplementary ISO spectra and IR spectral energy distributions wediscuss the nature of the extended IR emission of the two PNe NGC 6543and NGC 7008. Methods: .In the on-line appendix we describe thedata reduction, calibration and interpretation methods based on asimultaneous determination of the IR source and background contributionsfrom the on-source multi-aperture sequences. Normalized profiles enabledirect comparison with point source and flat-sky references. Modellingthe intensity distribution offers a quantitative method to assess sourceextent and angular scales of the main structures and is helpful inreconstructing the total source flux, if the source extends beyond aradius of 1 arcmin. The photometric calibration is described and typicalaccuracies are derived. General uncertainty, quality and reliabilityissues are addressed, too. Transient fitting to non-stabilised signaltime series, by means of combinations of exponential functions withdifferent time constants, improves the actual average signals andreduces their uncertainty. Results: .The emission of NGC 6543 inthe 3.6 μm band coincides with the core region of the optical nebulaand is homogeneously distributed. It is comprised of 65% continuum and35% atomic hydrogen line emission. In the 12 μm band a resolved butcompact double source is surrounded by a fainter ring structure with allemission confined to the optical core region. Strong line emission of[ArIII] at 8.99 μm and in particular [SIV] at 10.51 μm shapes thisspatial profile. The unresolved 60 μm emission originates from dust.It is described by a modified (emissivity index β = 1.5) blackbodywith a temperature of 85 K, suggesting that warm dust with a mass of 6.4× 10-4 Mȯ is mixed with the ionisedgas. The gas-to-dust mass ratio is about 220. The 25 μm emission ofNGC 7008 is characterised by a FWHM of about 50´´ with anadditional spot-like or ring-like enhancement at the bright rim of theoptical nebula. The 60 μm emission exhibits a similar shape, but isabout twice as extended. Analysis of the spectral energy distributionsuggests that the 25 μm emission is associated with 120 K warm dust,while the 60 μm emission is dominated by a second dust component with55 K. The dust mass associated with this latter component amounts to 1.2× 10-3 Mȯ, significantly higher thanpreviously derived. The gas-to-dust mass ratio is 59 which, compared tothe average value of 160 for the Milky Way, hints at dust enrichment bythis object.

The mean properties of planetary nebulae as a function of Peimbert class
Planetary nebulae are known to possess a broad range of abundances, andthese (with other characteristics) have been used to define five classesof outflow. Peimbert Type I sources, for instance, possess high N and Heabundances, filamentary structures, and low mean scaleheights above theGalactic plane, whilst those of Type III have much lower abundances,high peculiar velocities, and belong to the Galactic thick disc. Apartfrom some rather ill-defined indications, however, very little is knownconcerning their mean physical, spatial, structural, kinematic andthermal characteristics.We have performed a comprehensive study of all of these properties, andfind evidence for strong variations between the various Peimbertclasses. Certain of these differences are consistent with Type I sourceshaving the highest progenitor masses, although it seems that thesenebulae also possess the lowest rms densities and 5-GHz brightnesstemperatures. The latter results are in conflict with a range of recentmodelling.

A reexamination of electron density diagnostics for ionized gaseous nebulae
We present a comparison of electron densities derived from opticalforbidden line diagnostic ratios for a sample of over a hundred nebulae.We consider four density indicators, the [O II]λ3729/λ3726, [S II] λ6716/λ6731, [Cl III]λ5517/λ5537 and [Ar IV] λ4711/λ4740 doubletratios. Except for a few H II regions for which data from the literaturewere used, diagnostic line ratios were derived from our own high qualityspectra. For the [O II] λ3729/λ3726 doublet ratio, we findthat our default atomic data set, consisting of transition probabilitiesfrom Zeippen (\cite{zeippen1982}) and collision strengths from Pradhan(\cite{pradhan}), fit the observations well, although at high electrondensities, the [O II] doublet ratio yields densities systematicallylower than those given by the [S II] λ6716/λ6731 doubletratio, suggesting that the ratio of transition probabilities of the [OII] doublet, A(λ3729)/A(λ3726), given by Zeippen(\cite{zeippen1982}) may need to be revised upwards by approximately 6per cent. Our analysis also shows that the more recent calculations of[O II] transition probabilities by Zeippen (\cite{zeippen1987a}) andcollision strengths by McLaughlin & Bell (\cite{mclaughlin}) areinconsistent with the observations at the high and low density limits,respectively, and can therefore be ruled out. We confirm the earlierresult of Copetti & Writzl (\cite{copetti2002}) that the [O II]transition probabilities calculated by Wiese et al. (\cite{wiese}) yieldelectron densities systematically lower than those deduced from the [SII] λ6716/λ6731 doublet ratio and that the discrepancy ismost likely caused by errors in the transition probabilities calculatedby Wiese et al. (\cite{wiese}). Using our default atomic data set for [OII], we find that Ne([O II])  Ne([S II]) ≈Ne([Cl III])< Ne([Ar IV]).

The distances of Type I planetary nebulae
The distances D of planetary nebulae (PNe) are still extremelyuncertain. Although a variety of methods have been used to evaluate thisparameter, these are often in conflict, and subject to large random andsystematic errors. It is therefore important to evaluate D using as manyindependent procedures as possible. We outline here one further way inwhich this parameter may be assessed. It is noted that where the nebularmass range is narrow, then one might expect observed PNe radii to beroughly similar. This, where it occurs, would also result in acorrelation between their angular diameters Θ, and distances D.We find that just such a trend occurs for Type I nebulae, and we employthis to determine distances to a further 44 such outflows. Our meanvalues of D appear similar to those of Zhang [ApJS 98 (1995) 659],implying a relatively long PNe distance scale.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

The relation between elemental abundances and morphology in planetary nebulae
An investigation of the variation of elemental abundances with planetarynebula morphology is of considerable interest, since it has a bearingupon how such sources are formed, and from which progenitors they areejected. Recent advances in morphological classification now enable usto assess such trends for a statistically significant number of sources.We find, as a result, that the distribution N[log(X/H)] of sources withrespect to elemental abundance (X/H) varies between the differingmorphologies. Circular sources tend to peak towards low abundancevalues, whilst bipolar nebulae (BPNe) peak towards somewhat highervalues. This applies for most elemental species, although it is perhapsleast apparent for oxygen. In contrast, elliptical sources appear todisplay much broader functions N[log(X/H)], which trespass upon thedomains of both circular and elliptical planetary nebulae (PNe).We take these trends to imply that circular sources derive fromlower-mass progenitors, bipolar sources from higher-mass stars, and thatelliptical nebulae derive from all masses of progenitor, high and low.Whilst such trends are also evident in values of mean abundance, they are much less clear. Only in the cases of He/H, N/H,Ne/H and perhaps Ar/H is there evidence for significant abundancedifferences.Certain BPNe appear to possess low abundance ratios He/H and Ar/H, andthis confirms that a few such outflows may arise from lower-massprogenitors. Similarly, we note that ratios are quite modestin elliptical planetary nebulae, and not much different from those forcircular and bipolar PNe; a result that conflicts with the expectationsof at least one model of shell formation.

Comparative Absorption and Emission Abundance Analyses of Nebulae: Ion Emission Densities for IC 418
Recent analyses of nebular spectra have resulted in discrepantabundances from CNO forbidden and recombination lines. We considerindependent methods of determining ion abundances for emission nebulae,comparing ion emission measures with column densities derived fromresonance absorption lines viewed against the central star continuum.Separate analyses of the nebular emission lines and the stellar UVabsorption lines yield independent abundances for ions, and their ratiocan be expressed in terms of a parameterem, the ``emission density'' for eachion. Adequate data for this technique are still scarce, but separateanalyses of spectra of the planetary nebula and central star of IC 418do show discrepant abundances for several ions, especially Fe II. Thediscrepancies are probably due to the presence of absorbing gas thatdoes not emit and/or to uncertain atomic data and excitation processes,and they demonstrate the importance of applying the technique ofcombining emission- and absorption-line data in deriving abundances fornebulae.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained from the STScI, which is operated by AURA, Inc., under NASAcontract NAS 5-26555, and on observations made at CTIO/NOAO, which isoperated by AURA, Inc., under cooperative agreement with the NSF.

The Correlations between Planetary Nebula Morphology and Central Star Evolution: Analysis of the Northern Galactic Sample
Northern Galactic planetary nebulae (PNs) are studied to disclosepossible correlations between the morphology of the nebulae and theevolution of the central stars (CSs). To this end, we have built thebest database available to date, accounting for homogeneity andcompleteness. We use updated statistical distances and an updatedmorphological classification scheme, and we calculate Zanstratemperatures for a large sample of PNs. With our study we confirm thatround, elliptical, and bipolar PNs have different spatial distributionswithin the Galaxy, with average absolute distances to the Galactic planeof 0.73, 0.38, and 0.21 kpc, respectively. We also find evidence thatthe distributions of the CS masses are different across thesemorphological groups, although we do not find that CSs hosted by bipolarPNs are hotter, on average, than CSs within round and elliptical PNs.Our results are in broad agreement with previous analyses, indicatingthat round, elliptical, and bipolar PNs evolve from progenitors indifferent mass ranges and might belong to different stellar populations,as also indicated by the helium and nitrogen abundances of PNs ofdifferent morphology.

The distance scale of planetary nebulae
By collecting distances from the literature, a set of 73 planetarynebulae with mean distances of high accuracy is derived. This sample isused for recalibration of the mass-radius relationship, used by manystatistical distance methods. An attempt to correct for a statisticalpeculiarity, where errors in the distances influences the mass-radiusrelationship by increasing its slope, has been made for the first time.Distances to PNe in the Galactic Bulge, derived by this new method aswell as other statistical methods from the last decade, are then usedfor the evaluation of these methods as distance indicators. In order ofachieving a Bulge sample that is free from outliers we derive newcriteria for Bulge membership. These criteria are much more stringentthan those used hitherto, in the sense that they also discriminateagainst background objects. By splitting our Bulge sample in two, onewith optically thick (small) PNe and one with optically thin (large)PNe, we find that our calibration is of higher accuracy than most othercalibrations. Differences between the two subsamples, we believe, aredue to the incompleteness of the Bulge sample, as well as the dominanceof optical diameters in the ``thin'' sample and radio diameters in the``thick'' sample. Our final conclusion is that statistical methods givedistances that are at least as accurate as the ones obtained from manyindividual methods. Also, the ``long'' distance scale of Galactic PNe isconfirmed.

An analysis of the observed radio emission from planetary nebulae
We have analysed the radio fluxes for 264 planetary nebulae for whichreliable measurements of fluxes at 1.4 and 5 GHz, and of nebulardiameters are available. For many of the investigated nebulae, theoptical thickness is important, especially at 1.4 GHz. Simple modelslike the one specified only by a single optical thickness or spherical,constant density shells do not account satisfactorily for theobservations. Also an r-2 density distribution is ruled out.A reasonable representation of the observations can be obtained by atwo-component model having regions of two different values of opticalthickness. We show that the nebular diameters smaller than 10arcsec areuncertain, particularly if they come from photographic plates orGaussian fitting to the radio profile. While determining theinterstellar extinction from an optical to radio flux ratio, cautionshould be paid regarding optical thickness effects in the radio. We havedeveloped a method for estimating the value of self absorption. At 1.4GHz self absorption of the flux is usually important and can exceed afactor of 10. At 5 GHz self absorption is negligible for most of theobjects, although in some cases it can reach a factor of 2. The Galacticbulge planetary nebulae when used to calibrate the Shklovsky method givea mean nebular mass of 0.14 Msun. The statistical uncertaintyof the Shklovsky distances is smaller than a factor of 1.5. Table 1 isonly available in electronic form at http://www.edpsciences.org.

STV: Digital Imaging for the Masses?
Not Available

Gravity distances of planetary nebulae II. Aplication to a sample of galactic objects.
Not Available

Measurements of 12C/13C in planetary nebulae: Implications on stellar and Galactic chemical evolution
We present the results of a study aimed at determining the12C/13C ratio in two samples of planetary nebulae(PNe) by means of millimeter wave observations of 12CO and13CO. The first group includes six PNe which have beenobserved in the 3He+ hyperfine transition byBalser et al. (1997); the other group consists of 22 nebulae with richmolecular envelopes. We have determined the carbon isotopic ratio in 14objects, 9 of which are new detections. The results indicate a range ofvalues of 12C/13C between 9 and 23. We estimatethe mass of the progenitors of the PNe of our sample and combine thisinformation with the derived 12C/13C isotopicratios to test the predictions of stellar nucleosynthesis models. Wefind that the majority of PNe have isotopic ratios below the valuesexpected from current standard asymptotic giant branch models in themass range of interest. We suggest that the progenitors of the PNe musthave undergone a non-standard mixing process during their red giantphase and/or asymptotic giant phase, resulting in a significantenhancement of the 13C abundance in the surface layers. Ourstudy confirms a similar behaviour inferred from spectroscopicobservations of field population II stars and globular cluster giants,and extends it to the final stages of stellar evolution. Finally, wediscuss the implications of our results on models of Galactic chemicalevolution of 3He and 12C/13C.

Gas Dynamics in Planetary Nebulae: From Macro-structures to FLIERs
Purpose of this paper is to clarify how Planetary Nebulae (PNe) are veryinteresting laboratories to study cosmic gas dynamics. I first recallthe history of PNe which are generated from low and intermediate massstars through successive mass loss processes starting in the Reg Giantphase of evolution and continuing also after the termination of thepulsed AGB phase, where most of the nebular mass is believed to beejected. The correponding stellar winds are the ingredients of thenebula. Their initial properties and subsequent mutual interactions,under the action of the evolving stellar radiation field, areresponsible for the properties of the nebula. The observed structures ofPNe are considered in detail. Larger scale macroscopic structures (MACS)are examined separately from quite smaller scale microscopic structures(MICS). The formation of MACS, at least in cases of round to moderatelyelliptical PNe, is shown to be reasonably well understood in terms ofexisting hydrodynamical models. Considering the kinematical behaviour,MICS can be separated into FLIERs (Fast Low Ionization Emitting Regions)and SLOWERs (slowly moving). Attention is focussed on FLIERs and on theproposed mechanisms to interpret them. Recent observations with theHubble Space Telescope have provided us with a wealth of detailed(subarcsec) information on the nebular structures. The inner structureof FLIERs is here illustrated to consist of substructures of variousshapes with an high degree of individually from object to object, alsowithin the same PN. These new data call for deeper thoretical efforts tosolve the problems of cosmic gas dynamics, posed by their observedproperties. An ample account is given of the most relevant originalworks, in an effort to allow the non specialist reader to quickly becomeacquainted with the status of art in the various aspects of the subject.

The dust content of planetary nebulae: a reappraisal
We have performed a statistical analysis using broad band IRAS data onabout 500 planetary nebulae with the aim of characterizing their dustcontent. Our approach is different from previous studies in that it usesan extensive grid of photoionization models to test the methods forderiving the dust temperature, the dust-to-gas mass ratio and theaverage grain size. In addition, we use only distance independentdiagrams. With our models, we show the effect of contamination by atomiclines in the broad band IRAS fluxes during planetary nebula evolution.We find that planetary nebulae with very different dust-to-gas massratios exist, so that the dust content is a primordial parameter for theinterpretation of far infrared data of planetary nebulae. In contrastwith previous studies, we find no evidence for a decrease in thedust-to-gas mass ratio as the planetary nebulae evolve. We also showthat the decrease in grain size advocated by Natta & Panagia(\cite{NattaPanagia}) and Lenzuni et al. (\cite{Lenzuni}) is an artefactof their method of analysis. Our results suggest that the timescale fordestruction of dust grains in planetary nebulae is larger than theirlifetime. Table~1 is only accessible in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Visual Wide Binaries and the Structure of Planetary Nebulae
In recent work Ciardullo et al. listed 19 planetary nebulae surveyed bythe Hubble Space Telescope for the presence of resolved visual binarycompanions of their central stars. For 10 planetary nebulae they arguefor probable physical association of the resolved stars with the centralstars, while for nine the association is less likely. Such stellarcompanions, at orbital separations of hundreds to thousands ofastronomical units, will cause the structures of these planetary nebulaeto possess a nonaxisymmetric signature. By using images from theliterature of these 19 planetary nebulae, I demonstrate that thestructures of the planetary nebulae are compatible in most cases withthe arguments of Ciardullo et al. for association or nonassociation ofthe resolved stars with the planetary nebulae central stars. This showsthat whether a planetary nebula departs from having purely axisymmetricstructure can be used to strengthen an argument for an association or anonassociation of a putative wide companion with the stellar progenitorof the nebula.

Infrared Planetary Nebulae in the NRAO VLA Sky Survey
In order to construct a sample of planetary nebulae (PNe) unbiased bydust extinction, we first selected the 1358 sources in the IRAS PointSource Catalog north of J2000 declination delta=-40^deg having measuredS(25 μm)>=1 Jy and colors characteristic of PNe: detections orupper limits consistent with both S(12 μm)<=0.35S(25 μm) andS(25 μm)>=0.35S(60 μm). The majority are radio-quietcontaminating sources such as asymptotic giant branch stars. Free-freeemission from genuine PNe should make them radio sources. The 1.4 GHzNRAO VLA Sky Survey (NVSS) images and source catalog were used to rejectradio-quiet mid-infrared sources. We identified 454 IRAS sources withradio sources brighter than S~2.5 mJy beam^-1 (equivalent to T~0.8 K inthe 45" FHWM NVSS beam) by positional coincidence. They comprise 332known PNe in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulaeand 122 candidate PNe, most of which lie at very low Galactic latitudes.Exploratory optical spectroscopic observations suggest that most ofthese candidates are indeed PNe optically dimmed by dust extinction,although some contamination remains from H II regions, Seyfert galaxies,etc. Furthermore, the NVSS failed to detect only 4% of the known PNe inour infrared sample. Thus it appears that radio selection can greatlyimprove the reliability of PN candidate samples withoutsacrificingcompleteness.

A HUBBLE SPACE TELESCOPE Survey for Resolved Companions of Planetary Nebula Nuclei
We report the results of a Hubble Space Telescope ``snapshot'' surveyaimed at finding resolved binary companions of the central stars ofGalactic planetary nebulae (PNe). Using the the Wide Field and PlanetaryCamera and Wide Field Planetary Camera 2, we searched the fields of 113PNe for stars whose close proximity to the central star suggests aphysical association. In all, we find 10 binary nuclei that are verylikely to be physically associated and another six that are possiblebinary associations. By correcting for interstellar extinction andplacing the central stars' companions on the main sequence (or, in onecase, on the white dwarf cooling curve), we derive distances to theobjects, and thereby significantly increase the number of PNe withreliable distances. Comparison of our derived distances with thoseobtained from various statistical methods shows that all of the latterhave systematically overestimated the distances, by factors ranging upto a factor of 2 or more. We show that this error is most likely due tothe fact that the properties of our PNe with binary nuclei aresystematically different from those of PNe used heretofore to calibratestatistical methods. Specifically, our PNe tend to have lower surfacebrightnesses at the same physical radius than the traditionalcalibration objects. This difference may arise from a selection effect:the PNe in our survey are typically nearby, old nebulae, whereas most ofthe objects that calibrate statistical techniques are low-latitude, highsurface brightness, and more distant nebulae. As a result, thestatistical methods that seem to work well with samples of distant PNe,for example, those in the Galactic bulge or external galaxies, may notbe applicable to the more diverse population of local PNe. Our distancedeterminations could be improved with better knowledge of themetallicities of the individual nebulae and central stars, measurementsof proper motions and radial velocities for additional candidatecompanions, and deeper HST images of several of our new binary nuclei.

The kinematics of 867 galactic planetary nebulae
We present a compilation of radial velocities of 867 galactic planetarynebulae. Almost 900 new measurements are included. Previously publishedkinematical data are compared with the new high-resolution data toassess their accuracies. One of the largest samples in the literatureshows evidence for a systematic velocity offset. We calculate weightedaverages between all available data. Of the final values in thecatalogue, 90% have accuracies better than 20 km s(-1) . We use thiscompilation to derive kinematical parameters of the galacticdifferential rotation obtained from least-square fitting and toestablish the Disk rotation curve; we find no significal trend for thepresence of an increasing external rotation curve. We examine also therotation of the bulge; the derived curve is consistent with a linearlyincreasing rotation velocity with l: we find V_b,r=(9.9+/-1.3)l -(6.7+/-8.5) km s(-1) . A possible steeper gradient in the innermostregion is indicated. Table 2 is available in electronic form only, viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Planetary Nebulae in the NRAO VLA Sky Survey
The 1.4 GHz NRAO VLA Sky Survey (NVSS) images and source catalog wereused to detect radio emission from the 885 planetary nebulae north ofJ2000 declination delta = -40 deg in the Strasbourg-ESO Catalogue ofGalactic Planetary Nebulae. We identified 680 radio sources brighterthan about S = 2.5 mJy beam-1 (equivalent to T ~ 0.8 K in the 45" FWHMNVSS beam) with planetary nebulae by coincidence with accurate opticalpositions measured from Digitized Sky Survey (DSS) images. Totalextinction coefficients c at lambda = 4861 Angstroms were calculated forthe 429 planetary nebulae with available H beta fluxes and low free-freeoptical depths at 1.4 GHz. The variation of c with Galactic latitude andlongitude is consistent with the extinction being primarily interstellarand not intrinsic.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Properties That Cannot Be Explained by the Progenitors of Planetary Nebulae
I classify a large number of planetary nebulae (458) according to theprocess that caused their progenitors to blow axisymmetrical winds. Theclassification is based primarily on the morphologies of the differentplanetary nebulae, assuming that binary companions, stellar orsubstellar, are necessary in order to have axisymmetrical mass loss onthe asymptotic giant branch. I propose four evolutionary classes,according to the binary-model hypothesis: (1) Progenitors of planetarynebula that did not interact with any companion. These amount to ~10% ofall planetary nebulae. (2) Progenitors that interact with stellarcompanions that avoided a common envelope, 11^{+2}_{-3}% of all nebulae.(3) Progenitors that interact with stellar companions via a commonenvelope phase, 23^{+11}_{-5}% of all nebulae. (4) Progenitors thatinteract with substellar (i.e., planets and brown dwarfs) companions viaa common envelope phase, 56^{+5}_{-8}% of all nebulae. In order todefine and build the different classes, I start with clarifying somerelevant terms and processes related to binary evolution. I then discusskinematical and morphological properties of planetary nebulae thatappear to require the interaction of the planetary nebula progenitorsand/or their winds with companions, stellar or substellar.

Planetary nebulae morphologies, central star masses and nebular properties.
We have constituted a sample of about 80 PN with defined morphologiesand well observed basic parameters (fluxes, angular radii, expansionvelocities and magnitudes of the central stars). For these PN, we havederived the central star masses by comparing the observed set ofparameters with those predicted by a simple evolutionary model of a PN,expanding at the same velocity as the observed one. We have thenexamined the relations between the PN morphological types and otherproperties, linked to the central star mass. Bipolar PN are shown tohave a wider distribution of central star masses than the rest of PN,and shifted towards higher values. They lie closer to the Galactic planeand tend to have larger N/O ratios. Point symmetric PN, which have notbeen much studied so far, are found to constitute an outstanding class.They show an almost perfect M_*_-v_exp_ correlation. They correspond toa rather short evolutionary stage of PN. They lie, on average, furtherfrom the Galactic plane than bipolar PN and tend to have lower N/O.Globally, PN with higher central star masses are found closer to theGalactic plane, and the observed relation between N/O and M_*_ isroughly consistent with the predictions from evolutionary models for AGBstars.

The molecular envelopes of planetary nebulae.
We report the results of a survey of millimeter CO emission in 91planetary nebulae using the IRAM 30 m and SEST 15 m telescopes. Theobservations provide new detections or improved data for 23 nebulae inthe CO(2-1) and/or CO(1-0) line, and sensitive limits for those not seenin CO. Analysis of the results together with previous observationsconfirms the existence of an important class of planetary nebulae withmassive (10^-2^-a few M_sun__) envelopes of molecular gas.These nebulae typically have abundance ratios of N/O>0.3 and bipolarmorphologies indicative of a young disk population. The column densitythrough the envelopes and their mass relative to the mass of ionized gasshow dramatic decreases with increasing nebular size, documenting theexpansion of the envelopes and the growth of the optical nebulae at theexpense of the molecular gas. The molecular envelopes remain a majormass component in these objects until the nebulae reach a radius ofR=~0.1pc. The nebulae not detected in CO have little or no molecular gas(<~10^-2^-10^-3^Msun_), and their envelopes must berapidly photo-dissociated before or during the compact phase. The largedifferences in the molecular gas content of the nebulae highlight thedifferent evolutionary paths for planetary nebula formation which resultfrom the range in mass of the progenitors and the structure of theircircumstellar envelopes.

Destruction of Brown Dwarfs and Jet Formation in Planetary Nebulae
Abstract image available at:http://adsabs.harvard.edu/abs/1996ApJ...468..774S

Classification of planetary nebulae by cluster analysis and artificial neural networks.
According to the chemical composition, a sample of 192 Planetary Nebulaeof different types has been re-classified, and 41 others have beenclassified for the first time, by means of two methods not employed sofar in this field: hierarchical cluster analysis and supervisedartificial neural network. The cluster analysis reveals itself as a goodfirst guess for grouping Planetary Nebulae, while an artificial neuralnetwork provides reliable automated classification of this kind ofobjects.

Could Type I planetary nebulae be subdivided?
We have found evidences of a probable subdivision of Type I PlanetaryNebulae into two (or maybe three) sub-classes. Herein we shortly discussthe behavior of these sub-types illustrating it with abundance diagrams.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:21h00m32.50s
Apparent magnitude:13

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 7008

→ Request more catalogs and designations from VizieR