Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 6790



Upload your image

DSS Images   Other Images

Related articles

The Abundances of Light Neutron-Capture Elements in Planetary Nebulae. I. Photoionization Modeling and Ionization Corrections
We have conducted a large-scale survey of 120 planetary nebulae (PNe) tosearch for the near-infrared emission lines [Kr III] 2.199 μm and [SeIV] 2.287 μm. The neutron (n)-capture elements Se and Kr may beenriched in a PN if its progenitor star experienced s-processnucleosynthesis and third dredge-up. In order to determine Se and Krabundances, we have added these elements to the atomic databases of thephotoionization codes Cloudy and XSTAR, which we use to deriveionization correction factors (ICFs) to account for the abundances ofunobserved Se and Kr ions. However, much of the atomic data governingthe ionization balance of these two elements are unknown, and have beenapproximated from general principles. We find that uncertainties in theatomic data can lead to errors approaching 0.3 dex in the derived Seabundances and up to 0.2-0.25 dex for Kr. To reduce the uncertainties inthe Kr ionization balance stemming from the approximate atomic data, wehave modeled 10 bright PNe in our sample, selected because they exhibitemission lines from multiple Kr ions in their optical and near-infraredspectra. We have empirically adjusted the uncertain Kr atomic data untilthe observed line intensities of the various Kr ions are adequatelyreproduced by our models. Using the adjusted Kr atomic data, we havecomputed a grid of models over a wide range of physical parameters(central star temperature, nebular density, and ionization parameter)and derived formulae that can be used to compute Se and Kr ICFs. In thesecond paper of this series, we will apply these ICFs to our full sampleof 120 PNe, which comprises the first large-scale survey of n-captureelements in PNe.This paper includes data taken at the McDonald Observatory of theUniversity of Texas at Austin.

Polycyclic aromatic hydrocarbon emission bands in selected planetary nebulae: a study of the behaviour with gas phase C/O ratio
Airborne and space-based low-resolution spectroscopy in the 1980sdiscovered tantalizing quantitative relationships between the gas phaseC/O abundance ratio in planetary nebulae (PNe) and the fractions oftotal far-infrared (FIR) luminosity radiated by the 7.7- and 11.3-μmbands (the C = C stretch and C-H bend, respectively), of polycyclicaromatic hydrocarbons (PAHs). Only a very small sample of nebulae wasstudied in this context, limited by airborne observations of the7.7-μm band, or the existence of adequate IRAS Low ResolutionSpectrometer data for the 11.3-μm band. To investigate these trendsfurther, we have expanded the sample of planetaries available for thisstudy using Infrared Space Observatory (ISO) low-resolution spectrasecured with the Short Wavelength Spectrometer and the Long WavelengthSpectrometer. The new sample of 43 PNe, of which 17 are detected in PAHemission, addresses the range from C/O = 0.2-13 with the objective oftrying to delineate the pathways by which carbon dust grains might haveformed in planetaries. For the 7.7-μm and 11.3-μm bands, weconfirm that the ratio of band strength to total infrared (IR)luminosity is correlated with the nebular C/O ratio. Expressed inequivalent width terms, the cut-on C/O ratio for the 7.7-μm band isfound to be 0.6+0.2-0.4, in good accord with thatfound from sensitive ground-based measurements of the 3.3-μ band.

Helium recombination spectra as temperature diagnostics for planetary nebulae
Electron temperatures derived from the HeI recombination line ratios,designated Te(HeI), are presented for 48 planetary nebulae(PNe). We study the effect that temperature fluctuations inside nebulaehave on the Te(HeI) value. We show that a comparison betweenTe(HeI) and the electron temperature derived from the Balmerjump of the HI recombination spectrum, designated Te(HI),provides an opportunity to discriminate between the paradigms of achemically homogeneous plasma with temperature and density variations,and a two-abundance nebular model with hydrogen-deficient materialembedded in diffuse gas of a `normal' chemical composition (i.e.~solar), as the possible causes of the dichotomy between the abundancesthat are deduced from collisionally excited lines and those deduced fromrecombination lines. We find that Te(HeI) values aresignificantly lower than Te(HI) values, with an averagedifference of = 4000 K. Theresult is consistent with the expectation of the two-abundance nebularmodel but is opposite to the prediction of the scenarios of temperaturefluctuations and/or density inhomogeneities. From the observeddifference between Te(HeI) and Te(HI), we estimatethat the filling factor of hydrogen-deficient components has a typicalvalue of 10-4. In spite of its small mass, the existence ofhydrogen-deficient inclusions may potentially have a profound effect inenhancing the intensities of HeI recombination lines and thereby lead toapparently overestimated helium abundances for PNe.

Recombination Line versus Forbidden Line Abundances in Planetary Nebulae
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae(PNs) have been found to give abundances that are much larger in somecases than abundances from collisionally excited forbidden lines (CELs).The origins of this abundance discrepancy are highly debated. We presentnew spectroscopic observations of O II and C II recombination lines forsix planetary nebulae. With these data we compare the abundances derivedfrom the optical recombination lines with those determined fromcollisionally excited lines. Combining our new data with publishedresults on RLs in other PNs, we examine the discrepancy in abundancesderived from RLs and CELs. We find that there is a wide range in themeasured abundance discrepancyΔ(O+2)=logO+2(RL)-logO+2(CEL),ranging from approximately 0.1 dex (within the 1 σ measurementerrors) up to 1.4 dex. This tends to rule out errors in therecombination coefficients as a source of the discrepancy. Most RLsyield similar abundances, with the notable exception of O II multipletV15, known to arise primarily from dielectronic recombination, whichgives abundances averaging 0.6 dex higher than other O II RLs. Wecompare Δ(O+2) against a variety of physical propertiesof the PNs to look for clues as to the mechanism responsible for theabundance discrepancy. The strongest correlations are found with thenebula diameter and the Balmer surface brightness; high surfacebrightness, compact PNs show small values of Δ(O+2),while large low surface brightness PNs show the largest discrepancies.An inverse correlation of Δ(O+2) with nebular densityis also seen. A marginal correlation of Δ(O+2) is foundwith expansion velocity. No correlations are seen with electrontemperature, He+2/He+, central star effectivetemperature and luminosity, stellar mass-loss rate, or nebularmorphology. Similar results are found for carbon in comparing C II RLabundances with ultraviolet measurements of C III].

A reexamination of electron density diagnostics for ionized gaseous nebulae
We present a comparison of electron densities derived from opticalforbidden line diagnostic ratios for a sample of over a hundred nebulae.We consider four density indicators, the [O II]λ3729/λ3726, [S II] λ6716/λ6731, [Cl III]λ5517/λ5537 and [Ar IV] λ4711/λ4740 doubletratios. Except for a few H II regions for which data from the literaturewere used, diagnostic line ratios were derived from our own high qualityspectra. For the [O II] λ3729/λ3726 doublet ratio, we findthat our default atomic data set, consisting of transition probabilitiesfrom Zeippen (\cite{zeippen1982}) and collision strengths from Pradhan(\cite{pradhan}), fit the observations well, although at high electrondensities, the [O II] doublet ratio yields densities systematicallylower than those given by the [S II] λ6716/λ6731 doubletratio, suggesting that the ratio of transition probabilities of the [OII] doublet, A(λ3729)/A(λ3726), given by Zeippen(\cite{zeippen1982}) may need to be revised upwards by approximately 6per cent. Our analysis also shows that the more recent calculations of[O II] transition probabilities by Zeippen (\cite{zeippen1987a}) andcollision strengths by McLaughlin & Bell (\cite{mclaughlin}) areinconsistent with the observations at the high and low density limits,respectively, and can therefore be ruled out. We confirm the earlierresult of Copetti & Writzl (\cite{copetti2002}) that the [O II]transition probabilities calculated by Wiese et al. (\cite{wiese}) yieldelectron densities systematically lower than those deduced from the [SII] λ6716/λ6731 doublet ratio and that the discrepancy ismost likely caused by errors in the transition probabilities calculatedby Wiese et al. (\cite{wiese}). Using our default atomic data set for [OII], we find that Ne([O II])  Ne([S II]) ≈Ne([Cl III])< Ne([Ar IV]).

Chemical abundances of planetary nebulae from optical recombination lines - II. Abundances derived from collisionally excited lines and optical recombination lines
In Paper I, we presented spectrophotometric measurements of emissionlines from the ultraviolet (UV) to the far-infrared for 12 Galacticplanetary nebulae (PNe) and derived nebular thermal and densitystructures using a variety of plasma diagnostics. The measurements andplasma diagnostic results are used in the current paper to determineelemental abundances in these nebulae. Abundance analyses are carriedout using both strong collisionally excited lines (CELs) and weakoptical recombination lines (ORLs) from heavy element ions.Assuming electron temperatures and densities derived from HIrecombination spectra (line and continuum), we are able to determine theORL C abundance relative to hydrogen for all the PNe in our sample, Nand O abundances for 11 of them and Ne abundances for nine of them. Inall cases, ORL abundances are found to be systematically higher than thecorresponding values deduced from CELs. In NGC 40, the discrepancybetween the abundances derived from the two types of emission linereaches a factor of 17 for oxygen. For the other 10 PNe, thediscrepancies for oxygen vary from 1.6 to 3.1. In general, collisionallyexcited infrared fine-structure lines, which have excitation energiesless than 103 K and consequently emissivities that areinsensitive to electron temperature and temperature fluctuations, yieldionic abundances comparable to those derived from optical/UV CELs. For agiven nebula, the discrepancies between the ORL and CEL abundances areof similar magnitude for different elements. In other words, relativeabundance ratios such as C/O, N/O and Ne/O deduced from the traditionalmethod based on strong CELs are comparable to those yielded by ORLs, fora wide range of ORL to CEL oxygen abundance ratios, varying from nearunity to over a factor of 20.We have also determined ORL abundances relative to hydrogen for thethird-row element magnesium for 11 nebulae in our sample. In strongcontrast to the cases for second-row elements, Mg abundances derivedfrom the MgII 3d-4f λ4481 ORL are nearly constant for all the PNeanalysed so far and agree within the uncertainties with the solarphotospheric value.In accordance with results from previous studies, the ORL to CELabundance ratio is correlated with the difference between the electrontemperatures derived from the [OIII] forbidden-line ratio, on the onehand, and from the hydrogen recombination Balmer discontinuity, on theother. We find that the discrepancy between the ORL and CEL abundancesis correlated with nebular absolute diameter, surface brightness, theelectron density derived from [SII] CELs, and excitation class. Theresults confirm that the dichotomy of temperatures and heavy elementalabundances determined from the two types of emission line, which hasbeen widely observed in PNe, is a strong function of nebular evolution,as first pointed out by Garnett and Dinerstein.Our analyses show that temperature fluctuations and/or densityinhomogeneities are incapable of explaining the large discrepanciesbetween the heavy elemental abundances and electron temperaturesdetermined from the two types of emission line. Our analyses support thebi-abundance model of Liu et al., who have proposed that PNe containanother previously unseen component of ionized gas which, highlyenriched in heavy elements, has an electron temperature of<~103 K and emits strongly in recombination lines but notin CELs. Our determinations of low average emission temperatures fromthe observed line intensity ratios of HeI and OII ORLs lend furthersupport to this scenario.

Chemical abundances of planetary nebulae from optical recombination lines - I. Observations and plasma diagnostics
We have obtained deep optical spectra of medium resolution for a sampleof 12 Galactic planetary nebulae (PNe). Optical recombination lines(ORLs) from carbon, nitrogen and oxygen have been detected in 11 of themand neon ORLs in nine of them. All spectra were obtained by scanning along slit across the nebular surface, yielding relative line intensitiesfor the entire nebula that are suitable for comparison with integratedline fluxes measured in other wavelength regions using space-bornefacilities, such as the Infrared Space Observatory (ISO) and theInternational Ultraviolet Explorer (IUE). For 11 PNe, ISO infraredspectra between 2.4 and 197 μm are available, most of them taken byourselves, plus a Kuiper Airborne Observatory (KAO) infrared spectrum ofNGC 6210. IUE ultraviolet (UV) spectra are available for all nebulaeexcept one in our sample. The UV, optical and infrared spectra have beencombined to study nebular thermal and density structures and todetermine elemental abundances.We have determined UV to optical extinction curves towards these PNe byexamining observed fluxes of HI and HeII recombination lines, radiofree-free continuum flux density, and UV to optical nebular continua.For 11 PNe in our sample, the derived optical reddening curves are foundto be consistent with the standard Galactic extinction law for atotal-to-selective extinction ratio, R≡A(V)/EB-V= 3.1.However, the optical extinction curve towards Hu 1-2 yields R= 2.0. TheUV extinction towards Hu 1-2 and NGC 6572 is also found to be muchsteeper than the standard Galactic reddening law. In contrast, the UVextinction curve along the sight lines towards NGC 6210 is found to bemuch shallower, although in the latter case the uncertainties involvedare quite large.Electron temperatures and densities have been derived using a variety ofdiagnostic ratios of collisionally excited lines (CELs) in the UV,optical and infrared. The results show clear stratifications, both intemperature and density. Lines emitted by ions formed in regions ofhigher ionization degree yield higher temperatures than lines arisingfrom regions of lower ionization degree, while densities deduced fromratios of infrared diagnostic CELs of low critical densities, such asthe [OIII] 88-μm/52-μm ratio, are systematically lower than thosederived from UV and optical diagnostic lines, which in general have muchhigher critical densities than the infrared fine-structure lines.Electron temperatures have also been derived from the ratio of thenebular continuum Balmer discontinuity to H 11 for 11 PNe. For four ofthese, the Balmer jump temperatures are more than 1000 K lower thanvalues derived from the [OIII] optical collisionally excited diagnosticline ratio. With a difference of 3580 K, NGC 40 has the lowest Balmerjump temperature relative to the [OIII] optical forbidden-linetemperature. High-order Balmer line decrements have been used todetermine electron densities. The results are consistent with valuesderived from forbidden-line density-diagnostics.

Planetary nebula distances re-examined: an improved statistical scale
The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.

On the O II Ground Configuration Energy Levels
The most accurate way to measure the energy levels for the O II2p3 ground configuration has been from the forbidden lines inplanetary nebulae. We present an analysis of modern planetary nebuladata that nicely constrain the splitting within the 2D termand the separation of this term from the ground4S3/2 level. We extend this method to H II regionsusing high-resolution spectroscopy of the Orion Nebula, covering all sixvisible transitions within the ground configuration. These data confirmthe splitting of the 2D term while additionally constrainingthe splitting of the 2P term. The energies of the2P and 2D terms relative to the ground(4S) term are constrained by requiring that all six linesgive the same radial velocity, consistent with independent limits placedon the motion of the O+ gas and the planetary nebula data.

Electron temperatures and densities of planetary nebulae determined from the nebular hydrogen recombination spectrum and temperature and density variations
A method is presented to derive electron temperatures and densities ofplanetary nebulae (PNe) simultaneously, using the observed hydrogenrecombination spectrum, which includes continuum and line emission. Bymatching theoretical spectra to observed spectra around the Balmer jumpat about 3646 Å, we determine electron temperatures and densitiesfor 48 Galactic PNe. The electron temperatures based on this method -hereafter Te(Bal) - are found to be systematically lower thanthose derived from [OIII] λ4959/λ4363 and [OIII] (88 μm+ 52 μm)/λ4959 ratios - hereafterTe([OIII]na) andTe([OIII]fn). The electron densities based on thismethod are found to be systematically higher than those derived from[OII] λ3729/λ3726, [SII] λ6731/λ6716,[ClIII] λ5537/λ5517, [ArIV] λ4740/λ4711 and[OIII] 88 μm/52 μm ratios. These results suggest that temperatureand density fluctuations are generally present within nebulae. Thecomparison of Te([OIII]na) and Te(Bal)suggests that the fractional mean-square temperature variation(t2) has a representative value of 0.031. A majority oftemperatures derived from the Te([OIII]fn) ratioare found to be higher than those of Te([OIII]na),which is attributed to the existence of dense clumps in nebulae - those[OIII] infrared fine-structure lines are suppressed by collisionalde-excitation in the clumps. By comparingTe([OIII]fn), Te([OIII]na)and Te(Bal) and assuming a simple two-density-componentmodel, we find that the filling factor of dense clumps has arepresentative value of 7 × 10-5. The discrepanciesbetween Te([OIII]na) and Te(Bal) arefound to be anticorrelated with electron densities derived from variousdensity indicators; high-density nebulae have the smallest temperaturediscrepancies. This suggests that temperature discrepancy is related tonebular evolution. In addition, He/H abundances of PNe are found to bepositively correlated with the difference betweenTe([OIII]na) and Te(Bal), suggestingthat He/H abundances might have been overestimated generally because ofthe possible existence of H-deficient knots. Electron temperatures anddensities deduced from spectra around the Paschen jump regions at 8250Åare also obtained for four PNe: NGC 7027, NGC 6153, M 1-42 andNGC 7009. Electron densities derived from spectra around the Paschenjump regions are in good agreement with the corresponding values derivedfrom spectra around the Balmer jump, whereas temperatures deduced fromthe spectra around the Paschen jump are found to be lower than thecorresponding values derived from spectra around the Balmer jump for allthe four cases. The reason remains unclear.

A reanalysis of chemical abundances in galactic PNe and comparison with theoretical predictions
New determinations of chemical abundances for He, N, O, Ne, Ar and Sare derived for all galactic planetary nebulae (PNe) so far observedwith a relatively high accuracy, in an effort to overcome differences inthese quantities obtained over the years by different authors usingdifferent procedures. These include: ways to correct for interstellarextinction, the atomic data used to interpret the observed line fluxes,the model nebula adopted to represent real objects and the ionizationcorrections for unseen ions. A unique `good quality' classical-typeprocedure, i.e. making use of collisionally excited forbidden lines toderive ionic abundances of heavy ions, has been applied to allindividual sets of observed line fluxes in each specific position withineach PN. Only observational data obtained with linear detectors, andsatisfying some `quality' criteria, have been considered. Suchobservations go from the mid-1970s up to the end of 2001. Theobservational errors associated with individual line fluxes have beenpropagated through the whole procedure to obtain an estimate of theaccuracy of final abundances independent of an author's `prejudices'.Comparison of the final abundances with those obtained in relevantmulti-object studies on the one hand allowed us to assess the accuracyof the new abundances, and on the other hand proved the usefulness ofthe present work, the basic purpose of which was to take full advantageof the vast amount of observations done so far of galactic PNe, handlingthem in a proper homogeneous way. The number of resulting PNe that havedata of an adequate quality to pass the present selection amounts to131. We believe that the new derived abundances constitute a highlyhomogeneous chemical data set on galactic PNe, with realisticuncertainties, and form a good observational basis for comparison withthe growing number of predictions from stellar evolution theory. Owingto the known discrepancies between the ionic abundances of heavyelements derived from the strong collisonally excited forbidden linesand those derived from the weak, temperature-insensitive recombinationlines, it is recognized that only abundance ratios between heavyelements can be considered as satisfactorily accurate. A comparison withtheoretical predictions allowed us to assess the state of the art inthis topic in any case, providing some findings and suggestions forfurther theoretical and observational work to advance our understandingof the evolution of low- and intermediate-mass stars.

Sulfur, Chlorine, and Argon Abundances in Planetary Nebulae. IV. Synthesis and the Sulfur Anomaly
We have compiled a large sample of O, Ne, S, Cl, and Ar abundances thathave been determined for 85 Galactic planetary nebulae in a consistentand homogeneous manner using spectra extending from 3600 to 9600Å. Sulfur abundances have been computed using the near-IR lines of[S III] λλ9069, 9532 along with [S III] temperatures. Wefind average values, expressed logarithmically with a standarddeviation, of log(S/O)=-1.91+/-0.24, log(Cl/O)=-3.52+/-0.16, andlog(Ar/O)=-2.29+/-0.18, numbers consistent with previous studies of bothplanetary nebulae and H II regions. We also find a strong correlationbetween [O III] and [S III] temperatures among planetary nebulae. Inanalyzing abundances of Ne, S, Cl, and Ar with respect to O, we find atight correlation for Ne-O, and loose correlations for Cl-O and Ar-O.All three trends appear to be colinear with observed correlations for HII regions. S and O also show a correlation, but there is a definiteoffset from the behavior exhibited by H II regions and stars. We suggestthat this S anomaly is most easily explained by the existence ofS+3, whose abundance must be inferred indirectly when onlyoptical spectra are available, in amounts in excess of what is predictedby model-derived ionization correction factors in PNe. Finally for thedisk PNe, abundances of O, Ne, S, Cl, and Ar all show gradients whenplotted against Galactocentric distance. The slopes are statisticallyindistinguishable from one another, a result which is consistent withthe notion that the cosmic abundances of these elements evolve inlockstep.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

Angular dimensions of planetary nebulae
We have measured angular dimensions of 312 planetary nebulae from theirimages obtained in Hα (or Hα + [NII]). We have appliedthree methods of measurements: direct measurements at the 10% level ofthe peak surface brightness, Gaussian deconvolution and second-momentdeconvolution. The results from the three methods are compared andanalysed. We propose a simple deconvolution of the 10% levelmeasurements which significantly improves the reliability of thesemeasurements for compact and partially resolved nebulae. Gaussiandeconvolution gives consistent but somewhat underestimated diameterscompared to the 10% measurements. Second-moment deconvolution givesresults in poor agreement with those from the other two methods,especially for poorly resolved nebulae. From the results of measurementsand using the conclusions of our analysis we derive the final nebulardiameters which should be free from systematic differences between small(partially resolved) and extended (well resolved) objects in our sample.Table 1 is only available in electronic form athttp://www.edpsciences.org

HST Observations of Young Planetary Nebulae
Not Available

The carrier of the ``30'' mu m emission feature in evolved stars. A simple model using magnesium sulfide
We present 2-45 mu m spectra of a large sample of carbon-rich evolvedstars in order to study the ``30'' mu m feature. We find the ``30'' mu mfeature in a wide range of sources: low mass loss carbon stars, extremecarbon-stars, post-AGB objects and planetary nebulae. We extract theprofiles from the sources by using a simple systematic approach to modelthe continuum. We find large variations in the wavelength and width ofthe extracted profiles of the ``30'' mu m feature. We modelled the wholerange of profiles in a simple way by using magnesium sulfide (MgS) dustgrains with a MgS grain temperature different from the continuumtemperature. The systematic change in peak positions can be explained bycooling of MgS grains as the star evolves off the AGB. In severalsources we find that a residual emission excess at ~ 26 mu m can also befitted using MgS grains but with a different grains shape distribution.The profiles of the ``30'' mu m feature in planetary nebulae arenarrower than our simple MgS model predicts. We discuss the possiblereasons for this difference. We find a sample of warm carbon-stars withvery cold MgS grains. We discuss possible causes for this phenomenon. Wefind no evidence for rapid destruction of MgS during the planetarynebula phase and conclude that the MgS may survive to be incorporated inthe ISM. Based on observations obtained with ISO, an ESA project withinstruments funded by ESA Member states (especially the PI countries:France, Germany, The Netherlands and the United Kingdom) with theparticipation of ISAS and NASA. Appendix A (Figs. A.1 and A.2) is onlyavailable in electronic form at http://www.edpsciences.org

Gas temperature and excitation classes in planetary nebulae
Empirical methods to estimate the elemental abundances in planetarynebulae usually use the temperatures derived from the [O III] and [N II]emission-line ratios, respectively, for the high- and low-ionizationzones. However, for a large number of objects these values may not beavailable. In order to overcome this difficulty and allow a betterdetermination of abundances, we discuss the relationship between thesetwo temperatures. Although a correlation is not easily seen when asample of different PNe types is used, the situation is improved whenthey are gathered into excitation classes. From [OII]/[OIII] andHeII/HeI line ratios, we define four excitation classes. Then, usingstandard photoionization models which fit most of the data, a linearrelation between the two temperatures is obtained for each of the fourexcitation classes. The method is applied to several objects for whichonly one temperature can be obtained from the observed emission linesand is tested by recalculation of the radial abundance gradient of theGalaxy using a larger number of PNe. We verified that our previousgradient results, obtained with a smaller sample of planetary nebulae,are not changed, indicating that the temperature relation obtained fromthe photoionization models are a good approximation, and thecorresponding statistical error decreases as expected. Tables 3-5, 7 and9 are only available in electronic form at http://www.edpsciences.org

High Dispersion Spectra for Planetary Nebula Studies
The extremely complicated shapes of planetary nebulae revealed throughthe high resolution radio maps, direct imaging with the Hubble SpaceTelescope and observations with adaptive optics at large telescopes, aregreatly different from their imagined simplicity long ago. To addressthe complexity in physical conditions and geometries of planetarynebulae, one must secure spectra of high spatial resolution and highdispersion. It also may require a long exposure even with a largetelescopic aperture to reach faint features. We briefly review plasmadiagnostics and a diagnostic possibility of iron ions based on ourrecent high dispersion spectroscopic work.

Sulfur, Chlorine, and Argon in Planetary Nebulae. I. Observations and Abundances in a Northern Sample
This paper is the first of a series specifically studying the abundancesof sulfur, chlorine, and argon in type II planetary nebulae (PNe) in theGalactic disk. Ratios of S/O, Cl/O, and Ar/O constitute important testsof differential nucleosynthesis of these elements and serve as strictconstraints on massive star yield predictions. We present newground-based optical spectra extending from 3600-9600 Å for asample of 19 type II northern PNe. This range includes the strongnear-infrared lines of [S III] λλ9069,9532, which allowsus to test extensively their effectiveness as sulfur abundanceindicators. We also introduce a new, model-tested ionization correctionfactor for sulfur. For the present sample, we find average values ofS/O=1.2×10-2+/-0.71×10-2,Cl/O=3.3×10-4+/-1.6×10-4, andAr/O=5.0×10-3+/-1.9×10-3.

Crystalline silicon nanoparticles as carriers for the Extended Red Emission
In an attempt to determine the carrier of the Extended Red Emission(ERE), we have investigated a series of amorphous and crystallinematerials: natural coal, amorphous hydrogenated carbon, amorphoushydrogenated silicon carbide, porous silicon, and crystalline siliconnanoparticles. The photoluminescence (PL) behavior of various samples ofthese materials upon excitation with UV light was studied at roomtemperature focusing on both the wavelength dependence of thephotoluminescence and the PL yield. For some samples the yield is by fartoo low, other samples do not comply with the characteristic wavelengthrange of ERE. Only the samples of nanocrystalline silicon (poroussilicon and silicon nanoparticles) reveal PL properties that arecompatible with the astronomical observations. Besides this experimentalevidence, we will supply additional arguments leading to the conclusionthat silicon nanoparticles should be seriously considered as anattractive carrier for the Extended Red Emission.

Helium contamination from the progenitor stars of planetary nebulae: The He/H radial gradient and the ΔY / ΔZ enrichment ratio
In this work, two aspects of the chemical evolution of 4He inthe Galaxy are considered on the basis of a sample of disk planetarynebulae (PN). First, an application of corrections owing to thecontamination of 4He from the evolution of the progenitorstars shows that the He/H abundance by number of atoms is reduced by0.012 to 0.015 in average, leading to an essentially flat He/H radialdistribution. Second, a determination of the helium to heavy elementenrichment ratio using the same corrections leads to values in the range2.8 < ΔY / ΔZ < 3.6 for Y p = 0.23 and 2.0< ΔY / ΔZ < 2.8 for Y p = 0.24, in goodagreement with recent independent determinations and theoretical models.

An analysis of the observed radio emission from planetary nebulae
We have analysed the radio fluxes for 264 planetary nebulae for whichreliable measurements of fluxes at 1.4 and 5 GHz, and of nebulardiameters are available. For many of the investigated nebulae, theoptical thickness is important, especially at 1.4 GHz. Simple modelslike the one specified only by a single optical thickness or spherical,constant density shells do not account satisfactorily for theobservations. Also an r-2 density distribution is ruled out.A reasonable representation of the observations can be obtained by atwo-component model having regions of two different values of opticalthickness. We show that the nebular diameters smaller than 10arcsec areuncertain, particularly if they come from photographic plates orGaussian fitting to the radio profile. While determining theinterstellar extinction from an optical to radio flux ratio, cautionshould be paid regarding optical thickness effects in the radio. We havedeveloped a method for estimating the value of self absorption. At 1.4GHz self absorption of the flux is usually important and can exceed afactor of 10. At 5 GHz self absorption is negligible for most of theobjects, although in some cases it can reach a factor of 2. The Galacticbulge planetary nebulae when used to calibrate the Shklovsky method givea mean nebular mass of 0.14 Msun. The statistical uncertaintyof the Shklovsky distances is smaller than a factor of 1.5. Table 1 isonly available in electronic form at http://www.edpsciences.org.

ISO LWS observations of planetary nebula fine-structure lines
We have obtained 43-198μm far-infrared (IR) spectra for a sample of51 Galactic planetary nebulae (PN) and protoplanetary nebulae (PPN),using the Long Wavelength Spectrometer (LWS) on board the Infrared SpaceObservatory (ISO). Spectra were also obtained of the former PN candidateLo 14. The spectra yield fluxes for the fine-structure lines [Nii]122μm, [Niii] 57μm and [Oiii] 52 and 88μm emitted in theionized regions and the [Oi] 63- and 146-μm and [Cii] 158-μm linesfrom the photodissociation regions (PDRs), which have been used todetermine electron densities and ionic abundances for the ionizedregions and densities, temperatures and gas masses for the PDRs. Thestrong [Niii] and [Oiii] emission lines detected in the LWS spectrumtaken centred on Lo 14 could be associated with the nearby strong radioand infrared source G 331.5-0.1. We find that the electron densitiesyielded by the [Oiii] 88μm/52μm doublet ratio are systematicallylower than those derived from the optical [Ariv]λ4740/λ4711 and [Cliii] λ5537/λ5517 doubletratios, which have much higher critical densities than the 52- and88-μm lines, suggesting the presence of density inhomogeneities inthe nebulae. Ionic abundances, N+/H+,N2+/H+ and O2+/H+, as wellas the N2+/O2+ abundance ratio, which provides agood approximation to the N/O elemental abundance ratio, are derived.Although ionic abundances relative to H+ deduced from thefar-IR fine-structure lines are sensitive to the adopted electrondensity and the presence of density inhomogeneities, the strongdependence on the nebular physical conditions is largely cancelled outwhen N2+/O2+ is calculated from the57μm/(52μm+88μm) flux ratio, owing to the similarity of thecritical densities of the lines involved. The temperatures and densitiesof the PDRs around 24 PN have been determined from the observed [Oi] and[Cii] line intensity ratios. Except for a few objects, the deducedtemperatures fall between 200 and 500K, peaking around 250K. Thedensities of the PDRs vary from104-105cm-3, reaching3×105cm-3 in some young compact PN. With aderived temperature of 1600K and a density of105cm-3, the PDR of NGC 7027 is one of the warmestand at the same time one of the densest amongst the nebulae studied. Formost of the PN studied, the [Cii]-emitting regions contain only modestamounts of material, with gas masses <~0.1Msolar.Exceptional large PDR masses are found for a few nebulae, including NGC7027, the bipolar nebulae M2-9 and NGC 6302, the young dense planetarynebulae BD+30°3639, IC 418 and NGC 5315, and the old, probablyrecombining, nebulae IC 4406 and NGC 6072.

Raman-scattered HE II Line in the Planetary Nebula M2-9 and in the Symbiotic Stars RR Telescopii and HE 2-106
In this Letter, we report the detection of an emission feature at around6545 Å in the spectra of the bipolar planetary nebula M2-9 and thesymbiotic stars RR Telescopii and He 2-106 and propose to identify it asthe He II Raman-scattered feature. This feature was predicted byNussbaumer, Schmid, & Vogel, who suggested that it was formedthrough Raman scattering by atomic hydrogen of He II n=6-->n=2photons with a slightly shorter wavelength than that of Lyβ. Thescattering cross section, ~10-20 cm2 for thisprocess, implies the existence of a neutral hydrogen component with acolumn density NHI~1020 cm-2 around theHe II emission regions in these objects, which are believed to beassociated with the mass-loss process in the late stage of stellarevolution. Brief discussions on the astrophysical implications of Ramanscattering in these objects are presented.

The distances of planetary nebulae: A scaling factor based upon radial velocities
We have used the observed radial velocities of planetary nebulae, andthe galactic rotation curve to define a new distance scale for planetarynebulae. Care has been taken to restrict the analysis to sources inwhich distance non-linearities are minimised, and for which distortionof the distance scale is likely to be small. We conclude, as a result,that the so-called ``long'' distance scales are the most valid, and thatvarious ``shorter'' scales are unlikely to be correct. The primarysystematic errors in this procedure derive from uncertainties in thegalactic rotation profile, and in Θ0 and R0.Such errors are less than those normally associated with PN distancedeterminations.

The Galactic disc distribution of planetary nebulae with warm dust emission features - I
We investigate the Galactic disc distribution of a sample of planetarynebulae characterized in terms of their mid-infrared spectral features.The total number of Galactic disc PNe with 8-13μm spectra is broughtup to 74 with the inclusion of 24 new objects, the spectra of which wepresent for the first time. 54 PNe have clearly identified warm dustemission features, and form a sample that we use to construct thedistribution of the C/O chemical balance in Galactic disc PNe. The dustemission features complement the information on the progenitor massesbrought by the gas-phase N/O ratios: PNe with unidentified infraredemission bands have the highest N/O ratios, while PNe with the silicatesignature have either very high N enrichment or close to none. We find atrend for a decreasing proportion of O-rich PNe towards the third andfourth Galactic quadrants. Two independent distance scales confirm thatthe proportion of O-rich PNe decreases from 30\pm 9 per cent inside the solar circle to 14\pm 7 per cent outside. PNe with warm dustare also the youngest. PNe with no warm dust are uniformly distributedin C/O and N/O ratios, and do not appear to be confined to C/O\sim 1. They also have higher 6-cmfluxes, as expected from more evolved PNe. We show that the IRAS fluxesare a good representation of the bolometric flux for compact andIR-bright PNe, which are probably optically thick. Selection of objectswith \fontshape{it}{F}(12\hphantom{0}\mu m)>0.5\hphantom{0} Jyshould probe a good portion of the Galactic disc for these young, denseand compact nebulae, and the dominant selection effects are rooted inthe PN catalogues.

Gravity distances of planetary nebulae II. Aplication to a sample of galactic objects.
Not Available

On the abundance gradient of the galactic disk
Estimates of the gas temperature in planetary nebulae obtained from the[O III] emission line ratio and from the Balmer discontinuity indicatedifferences reaching up to 6000 K (Liu & Danziger 1993). The [O III]temperature is commonly used to obtain the ionic fractions of highlyionized ions, particularly the O++ and Ne++ ions when using theempirical method to calculate the elemental abundances of photoionizedgas from the observed emission line intensities. However, if the gastemperature is overestimated the elemental abundances may beunderestimated. In particular this may lead to an incorrect elementalabundance gradient for the Galaxy, usually used as a constraint for thechemical evolution models. Using Monte Carlo simulations, we calculatethe systematic error introduced in the abundance gradient obtained fromplanetary nebulae by an overestimation of the gas temperature. Theresults indicate that the abundance gradient in the Galaxy should besteeper than previously assumed.

Distances of Galactic Planetary Nebulae Based on a Relationship Between the Central Star Mass and the N/O Abundance
In this paper, we propose a method to determine distances of Galacticplanetary nebulae on the basis of a relationship between the centralstar mass and the nebular N/O abundance ratio. This relationship is usedin combination with some basic parameters of the central stars, such asthe lambda 5480 flux, surface gravity and visual magnitude in order toobtain distances to a sample of a hundred Galactic planetary nebulae.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:19h22m56.97s
Apparent magnitude:10

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 6790

→ Request more catalogs and designations from VizieR