Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 660



Upload your image

DSS Images   Other Images

Related articles

HI content in galaxies in loose groups
Gas deficiency in cluster spirals is well known and ram-pressurestripping is considered the main gas removal mechanism. In some compactgroups too gas deficiency is reported. However, gas deficiency in loosegroups is not yet well established. Lower dispersion of the membervelocities and the lower density of the intragroup medium in small loosegroups favour tidal stripping as the main gas removal process in them.Recent releases of data from the HI Parkes All-Sky Survey (HIPASS) andcatalogues of nearby loose groups with associated diffuse X-ray emissionhave allowed us to test this notion. In this paper, we address thefollowing questions: (i) do galaxies in groups with diffuse X-rayemission statistically have lower gas content compared to the ones ingroups without diffuse X-ray emission? (ii) does HI deficiency vary withthe X-ray luminosity, LX, of the loose group in a systematicway? We find that (i) galaxies in groups with diffuse X-ray emission, onaverage, are HI deficient, and have lost more gas compared to those ingroups without X-ray emission; the latter are found not to havesignificant HI deficiency; (ii) no systematic dependence of the HIdeficiency with LX is found. Ram-pressure-assisted tidalstripping and evaporation by thermal conduction are the two possiblemechanisms to account for this excess gas loss.

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

Photometric survey of the polar ring galaxy NGC 6822
Context: .We have previously established, from a carbon star survey,that the Local Group dwarf irregular galaxy NGC 6822 is much larger thanits central bright core. Aims: . Four MegaCam fields are acquiredto survey a 2°× 2° area centred on NGC 6822 to fullydetermine its extent and map its stellar populations. Methods:.Photometry of over one million stars is obtained in the SDSS g', r', i'to three magnitudes below the TRGB. RGB stars, selected from theirmagnitudes and colours, are used to map the NGC 6822 stellardistribution up to a distance of 60 arcmin. Results: .We map thereddening over the whole area. We establish that the stellar outerstructure of NGC 6822 is elliptical in shape, with ɛ=0.36 and amajor-axis PA = 65°, contrasting with the orientation of the HIdisk. The density enhancement can be seen up to a semi-major axis of 36'making NGC 6822 as big as the Small Magellanic Cloud. We fit twoexponentials to the surface density profile of the spheroid, andidentify a bulge with a scale length of 3.85' and an outer spheroid witha scale length of 10.0'. We find intermediate-age C stars up to ˜40'while demonstrating that the SDSS filters are unsuitable to identifyextragalactic C stars. Conclusions: .NGC 6822 is a unique LocalGroup galaxy with shape and structure suggesting a polar ringconfiguration. Radial velocities of carbon stars have indeeddemonstrated that there are two kinematical systems in NGC 6822.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

AM 1934-563: a giant spiral polar-ring galaxy in a triplet
We have observed the emission-line kinematics and photometry of asouthern triplet of galaxies. The triplet contains a giant spiral galaxyAM 1934-563 whose optical structure resembles a polar-ring galaxy: adistorted spiral disk, seen almost edge-on, and a faint large-scale (45kpc in diameter) warped structure, inclined by 60°-70° withrespect to the disk major axis. The triplet shows a relatively smallvelocity dispersion (69 km s-1) and a large crossing time(0.17 in units of the Hubble time). The disk of AM 1934-563 demonstratesoptical colors typical of early-type spirals, a strong radial colorgradient, and almost exponential surface brightness distribution with anexponential scale-length value of 3.1 kpc (R passband). The galaxy showsa maximum rotation velocity of about 200 km s-1 and it liesclose to the Tully-Fisher relation for spiral galaxies. The suspectedpolar ring is faint (μ(B) ≥ 24) and strongly warped. Its totalluminosity comprises 10-15% of the total luminosity of AM 1934-563. Wemodel this system using numerical simulations, and study its possibleformation mechanisms. We find that the most robust model that reproducesthe observed characteristics of the ring and the host galaxy is thetidal transfer of mass from a massive gas-rich donor galaxy to the polarring. The physical properties of the triplet of galaxies are inagreement with this scenario.

The XMM-Newton Needles in the Haystack Survey: the local X-ray luminosity function of `normal' galaxies
In this paper we estimate the local (z < 0.22) X-ray luminosityfunction of `normal' galaxies derived from the XMM-Newton Needles in theHaystack Survey. This is an on-going project that aims to identifyX-ray-selected normal galaxies (i.e. non-AGN dominated) in the localUniverse. We are using a total of 70 XMM-Newton fields covering an areaof 11 deg2 which overlap with the Sloan Digital Sky SurveyData Release 2. Normal galaxies are selected on the basis of theirresolved optical light profile, their low X-ray-to-optical flux ratio[log(fx/fo) < - 2] and soft X-ray colours. Wefind a total of 28 candidate normal galaxies to the 0.5-8keV band fluxlimit of ~2 × 10-15ergcm-2s-1.Optical spectra are available for most sources in our sample (82 percent). These provide additional evidence that our sources are bona fidenormal galaxies with X-ray emission coming from diffuse hot gas emissionand/or X-ray binaries rather than a supermassive black hole. 16 of ourgalaxies have narrow emission lines or a late-type spectral energydistribution (SED) while the remaining 12 present only absorption linesor an early-type SED. Combining our XMM-Newton sample with 18 local (z< 0.22) galaxies from the Chandra Deep Field North and South surveys,we construct the local X-ray luminosity function of normal galaxies.This can be represented with a Schechter form with a break atL*~ 3+1.4-1.0×1041ergs-1 and a slope of α~ 1.78 +/- 0.12.Using this luminosity function and assuming pure luminosity evolution ofthe form ~(1 +z)3.3 we estimate a contribution to the X-raybackground from normal galaxies of ~10-20 per cent (0.5-8keV). Finally,we derive, for the first time, the luminosity functions for early- andlate-type systems separately.

Dust in spiral galaxies: global properties
We present and analyse high-quality Submillimetre Common-User BolometerArray (SCUBA) 850- and 450-μm images of 14 local spiral galaxies,including the detection of dust well out into the extended disc in manycases. We use these data in conjunction with published far-infrared fluxdensities from IRAS and ISO, and millimetre-wave measurements fromground-based facilities to deduce the global properties of the dust inthese galaxies, in particular temperature and mass. We find that simpletwo-temperature greybody models of fixed dust emissivity index β= 2and with typical temperatures of 25 < Twarm < 40 K and10 < Tcold < 20 K provide good fits to the overallspectral energy distributions. The dust mass in the cold componentcorrelates with the mass in atomic hydrogen and the mass in the warmcomponent correlates with the mass in molecular hydrogen. These resultsthus fit the simple picture in which the cold dust is heatedpredominantly by the interstellar radiation field, while the hot dust isheated predominantly by OB stars in more active regions, although weargue that there is some mixing. The mean gas-to-dust mass ratio is 120+/- 60, very similar to that found within our own galaxy and roughly afactor of 10 lower than that derived from IRAS data alone. Thegas-to-dust mass ratios in the warm, molecular component are on averagehigher than those in the cold, atomic component. We compare ourmodelling results with similar results for more luminous spiral galaxiesselected at far-infrared wavelengths by the SCUBA Local Universe GalaxySurvey. We find that whilst the total dust mass distributions of the twosamples are indistinguishable, they have significantly different dusttemperature distributions in both the warm and cold components. Wesuggest that this difference might be related to the level of starformation activity in these systems, with the more active galaxieshaving more intense interstellar radiation fields and higher dusttemperatures.

Mid-Infrared Spectra of Classical AGNs Observed with the Spitzer Space Telescope
Full low-resolution (65

Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra Observations
In order to find an explanation for the radiative quiescence ofsupermassive black holes in the local universe, the most accurateestimates for a sample of nearby galaxies are collected for the mass ofa central black hole (MBH), the nuclear X-ray luminosityLX,nuc, and the circumnuclear hot gas density andtemperature, by using Chandra data. The nuclear X-ray luminosityLX,nuc varies by ~3 orders of magnitude and does not show arelationship with MBH or with the Bondi mass accretion rateM˙B LX,nuc is always much lower than expectedif M˙B ends in a standard accretion disk with highradiative efficiency (this instead can be the case of the active nucleusof Cen A). Radiatively inefficient accretion as in the standardadvection-dominated accretion flow (ADAF) modeling may explain the lowluminosities of a few cases; for others, the predicted luminosity isstill too high, and, in terms of Eddington-scaled quantities, it isincreasingly higher than that observed for increasingM˙B. Variants of the simple radiatively inefficientscenario including outflow and convection may reproduce the low emissionlevels observed, since the amount of matter actually accreted is reducedconsiderably. However, the most promising scenario includes feedbackfrom accretion on the surrounding gas; this has the important advantagesof naturally explaining the observed lack of relationship amongLX,nuc, MBH, and M˙B, and evadingthe problem of the fate of the material accumulating in the centralgalactic regions over cosmological times.

EGRET Upper Limits and Stacking Searches of Gamma-Ray Observations of Luminous and Ultraluminous Infrared Galaxies
We present a stacking analysis of EGRET γ-ray observations at thepositions of luminous and ultraluminous infrared galaxies. The latterwere selected from the recently presented HCN survey, which is thoughtto contain the most active star-forming regions of the universe.Different sorting criteria are used, and since there is no positivecollective detection of γ-ray emission from these objects, wedetermined both collective and individual upper limits. The uppermostexcess we find appears in the case of ULIRGs ordered by redshift, at avalue of 1.8 σ.

A Chandra Snapshot Survey of Infrared-bright LINERs: A Possible Link Between Star Formation, Active Galactic Nucleus Fueling, and Mass Accretion
We present results from a high-resolution X-ray imaging study of nearbyLINERs observed by ACIS on board Chandra. This study complements andextends previous X-ray studies of LINERs, focusing on the underexploredpopulation of nearby dust-enshrouded infrared-bright LINERs. The sampleconsists of 15 IR-bright LINERs (LFIR/LB>3),with distances that range from 11 to 26 Mpc. Combining our sample withprevious Chandra studies, we find that ~51% (28/55) of the LINERsdisplay compact hard X-ray cores. The nuclear 2-10 keV luminosities ofthe galaxies in this expanded sample range from ~2×1038to ~2×1044 ergs s-1. We find that the mostextreme IR-faint LINERs are exclusively active galactic nuclei (AGNs).The fraction of LINERs containing AGNs appears to decrease with IRbrightness and increase again at the highest values ofLFIR/LB. We find that of the 24 LINERs showingcompact nuclear hard X-ray cores in the expanded sample that wereobserved at Hα wavelengths, only eight actually show evidence of abroad line. Similarly, of the 14 LINERs showing compact nuclear hardX-ray cores with corresponding radio observations, only eight display acompact flat spectrum radio core. These findings emphasize the need forhigh-resolution X-ray imaging observations in the study of IR-brightLINERs. Finally, we find an intriguing trend in the Eddington ratioversus LFIR and LFIR/LB for theAGN-LINERs in the expanded sample that extends over 7 orders ofmagnitude in L/LEdd. This correlation may imply a linkbetween black hole growth, as measured by the Eddington ratio, and thestar formation rate, as measured by the far-IR luminosity andIR-brightness ratio. If the far-IR luminosity is an indicator of themolecular gas content in our sample of LINERs, our results may furtherindicate that the mass accretion rate scales with the host galaxy's fuelsupply. We discuss the potential implications of our results in theframework of black hole growth and AGN fueling in low-luminosity AGNs.

Hα Imaging of Early-Type Sa-Sab Spiral Galaxies. II. Global Properties
New results, based on one of the most comprehensive Hα imagingsurveys of nearby Sa-Sab spirals completed to date, reveals early-typespirals to be a diverse group of galaxies that span a wide range inmassive star formation rates. While the majority of Sa-Sab galaxies inour sample are forming stars at a modest rate, a significant fraction(~29%) exhibit star formation rates greater than 1 Msolaryr-1, rivaling the most prolifically star-forming late-typespirals. A similar diversity is apparent in the star formation historyof Sa-Sab spirals as measured by their Hα equivalent widths.Consistent with our preliminary results presented in the first paper inthis series, we find giant H II regions [L(Hα)>=1039ergs s-1] in the disks of ~37% of early-type spirals. Wesuspect that recent minor mergers or past interactions are responsiblefor the elevated levels of Hα emission and, perhaps, for thepresence of giant H II regions in these galaxies. Our results, however,are not in total agreement with the Hα study of Kennicutt &Kent, who did not find any early-type spirals with Hα equivalentwidths >14 Å. A close examination of the morphologicalclassification of galaxies, however, suggests that systematicdifferences between the Revised Shapley-Ames Catalog and the SecondReference Catalogue may be responsible for the contrasting results.Based on observations obtained with the 3.5 m telescope at Apache PointObservatory (APO) and the 0.9 m telescope at Kitt Peak NationalObservatory (KPNO). The APO 3.5 m telescope is owned and operated by theAstrophysical Research Consortium.

The opacity of spiral galaxy disks. V. Dust opacity, HI distributions and sub-mm emission
The opacity of spiral galaxy disks, from counts of distant galaxies, iscompared to HI column densities. The opacity measurements are calibratedusing the "Synthetic Field Method" from González et al. (1998,ApJ, 506, 152), Holwerda et al. (2005a, AJ, 129, 1381). When comparedfor individual disks, the HI column density and dust opacity do not seemto be correlated as HI and opacity follow different radial profiles. Toimprove statistics, an average radial opacity profile is compared to anaverage HI profile. Compared to dust-to-HI estimates from theliterature, more extinction is found in this profile. This differencemay be accounted for by an underestimate of the dust in earliermeasurements due to their dependence on dust temperature. Since the SFMis insensitive to the dust temperature, the ratio between the SFMopacity and HI could very well be indicative of the true ratio. Earlierclaims for a radially extended cold dust disk were based on sub-mmobservations. A comparison between sub-mm observations and counts ofdistant galaxies is therefore desirable. We present the best currentexample of such a comparison, M 51, for which the measurements seem toagree. However, this remains an area where improved counts of distantgalaxies, sub-mm observations and our understanding of dust emissivityare needed.

New H2O masers in Seyfert and FIR bright galaxies
Using the Effelsberg 100-m telescope, detections of four extragalacticwater vapor masers are reported. Isotropic luminosities are ~50, 1000, 1and 230 Lȯ for Mrk 1066 (UGC 2456), Mrk 34, NGC 3556 andArp 299, respectively. Mrk 34 contains by far the most distant and oneof the most luminous water vapor megamasers so far reported in a Seyfertgalaxy. The interacting system Arp 299 appears to show two maserhotspots separated by approximately 20´´. With these newresults and even more recent data from Braatz et al. (2004, ApJ, 617,L29), the detection rate in our sample of Seyferts with known jet-NarrowLine Region interactions becomes 50% (7/14), while in star forminggalaxies with high (S100~μ m>50 Jy) far infrared fluxesthe detection rate is 22% (10/45). The jet-NLR interaction sample maynot only contain “jet-masers” but also a significant numberof accretion “disk-masers” like those seen in NGC 4258. Astatistical analysis of 53 extragalactic H2O sources (excluding theGalaxy and the Magellanic Clouds) indicates (1) that the correlationbetween IRAS Point Source and H2O luminosities, established forindividual star forming regions in the galactic disk, also holds forAGN-dominated megamaser galaxies; (2) that maser luminosities are notcorrelated with 60 μm/100 μm color temperatures; and (3) that onlya small fraction of the luminous megamasers (L_H_2O > 100Lȯ) detectable with 100-m sized telescopes have so farbeen identified. The H2O luminosity function (LF) suggests that thenumber of galaxies with 1 Lȯ < L_H_2O < 10Lȯ, the transition range between“kilomasers” (mostly star formation) and“megamasers” (active galactic nuclei), is small. The overallslope of the LF, ~-1.5, indicates that the number of detectable masersis almost independent of their luminosity. If the LF is not steepeningat very high maser luminosities and if it is possible to find suitablecandidate sources, H2O megamasers at significant redshifts should bedetectable even with present day state-of-the-art facilities.

Radio recombination lines from the starburst galaxy NGC 3256
We have detected the radio recombination lines H91α and H92αwith rest frequencies of 8.6 GHz and 8.3 GHz from the starburst nucleusNGC 3256 at an angular resolution of 16.4'' × 9.6'' using theAustralia Telescope Compact Array and at an angular resolution of 12.0''× 2.9'' using the VLA. The line was detected at ~1 mJybeam-1 peak with a width of 160 km s-1 with theATCA and at ~0.5 mJy beam-1 peak with a width of 114 kms-1 with the VLA. Modelling the line emitting region as acollection of H II regions, we derive constraints on the required numberof H II regions, their temperature, density, and distribution. We findthat a collection of 10 to 300 H II regions with temperatures of 5000 K,densities of 1000 cm-3 to 5000 cm-3 and diametersof 15 pc produced good matches to the line and continuum emmission. TheLyman continuum production rate required to maintain the ionization is 2× 1052~s-1 to 6 ×1053~s-1, which requires 600 to 17 000 O5 stars tobe produced in the starburst.

Studies of Extragalactic Formaldehyde and Radio Recombination Lines
We present the most sensitive and extensive survey yet performed ofextragalactic H2CO 6 cm (4.829 GHz) emission/absorption.Sixty-two sources were observed with the C-band system of the AreciboTelescope to a 1 σ rms noise level of ~0.3 mJy. We report a newdetection of H2CO 6 cm absorption toward NGC 520 and theconfirmation of H2CO 6 cm absorption toward several sources.We report confirmation of H2CO 6 cm emission toward the OHmegamasers Arp 220, IC 860, and IRAS 15107+0724. At present these arethe only extragalactic H2CO 6 cm emitters independentlyconfirmed. A characterization of the properties of formaldehydeabsorbers and emitters based on infrared properties of the galaxies isdiscussed. We also conducted a simultaneous survey of the H110αhydrogen recombination line toward a sample of 53 objects. We report thedetection of H110α toward the giant extragalactic H II region NGC604 in M33.

HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
We report systematic HCN J=1-0 (and CO) observations of a sample of 53infrared (IR) and/or CO-bright and/or luminous galaxies, including sevenultraluminous infrared galaxies, nearly 20 luminous infrared galaxies,and more than a dozen of the nearest normal spiral galaxies. This is thelargest and most sensitive HCN survey of galaxies to date. All galaxiesobserved so far follow the tight correlation between the IR luminosityLIR and the HCN luminosity LHCN initially proposedby Solomon, Downes, & Radford, which is detailed in a companionpaper. We also address here the issue of HCN excitation. There is noparticularly strong correlation between LHCN and the 12 μmluminosity; in fact, of all the four IRAS bands, the 12 μm luminosityhas the weakest correlation with the HCN luminosity. There is also noevidence of stronger HCN emission or a higher ratio of HCN and COluminosities LHCN/LCO for galaxies with excess 12μm emission. This result implies that mid-IR radiative pumping, orpopulating, of the J=1 level of HCN by a mid-IR vibrational transitionis not important compared with the collisional excitation by densemolecular hydrogen. Furthermore, large velocity gradient calculationsjustify the use of HCN J=1-0 emission as a tracer of high-densitymolecular gas (>~3×104/τcm-3) andgive an estimate of the mass of dense molecular gas from HCNobservations. Therefore, LHCN may be used as a measure of thetotal mass of dense molecular gas, and the luminosity ratioLHCN/LCO may indicate the fraction of moleculargas that is dense.

The Star Formation Rate and Dense Molecular Gas in Galaxies
HCN luminosity is a tracer of dense molecular gas,n(H2)>~3×104cm-3, associatedwith star-forming giant molecular cloud (GMC) cores. We present theresults and analysis of our survey of HCN emission from 65 infraredgalaxies, including nine ultraluminous infrared galaxies (ULIGs,LIR>~1012Lsolar), 22 luminousinfrared galaxies (LIGs,1011Lsolar0.06 are LIGs or ULIGs. Normal spiralsall have similar and low dense gas fractionsLHCN/LCO=0.02-0.05. The global star formationefficiency depends on the fraction of the molecular gas in a densephase.

Missing Massive Stars in Starbursts: Stellar Temperature Diagnostics and the Initial Mass Function
Determining the properties of starbursts requires spectral diagnosticsof their ultraviolet radiation fields, to test whether very massivestars are present. We test several such diagnostics, using new models ofline ratio behavior combining CLOUDY, Starburst99, and up-to-datespectral atlases. For six galaxies we obtain new measurements of He I1.7 μm/Br10, a difficult to measure but physically simple (andtherefore reliable) diagnostic. We obtain new measurements of He I 2.06μm/Brγ in five galaxies. We find that He I 2.06 μm/Brγand [O III]/Hβ are generally unreliable diagnostics in starbursts.The heteronuclear and homonuclear mid-infrared line ratios (notably [NeIII] 15.6 μm/[Ne II] 12.8 μm) consistently agree with each otherand with He I 1.7 μm/Br10 this argues that the mid-infrared lineratios are reliable diagnostics of spectral hardness. In a sample of 27starbursts, [Ne III]/[Ne II] is significantly lower than modelpredictions for a Salpeter initial mass function (IMF) extending to 100Msolar. Plausible model alterations strengthen thisconclusion. By contrast, the low-mass and low-metallicity galaxies II Zw40 and NGC 5253 show relatively high neon line ratios, compatible with aSalpeter slope extending to at least ~40-60 Msolar. Onesolution for the low neon line ratios in the high-metallicity starburstswould be that they are deficient in >~40 Msolar starscompared to a Salpeter IMF. An alternative explanation, which we prefer,is that massive stars in high-metallicity starbursts spend much of theirlives embedded within ultracompact H II regions that prevent the near-and mid-infrared nebular lines from forming and escaping. Thishypothesis has important consequences for starburst modeling andinterpretation.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations
We present a spectroscopic study of the stellar populations oflow-luminosity active galactic nuclei (LLAGNs). Our main goal is todetermine whether the stars that live in the innermost (100 pc scale)regions of these galaxies are in some way related to the emission-lineproperties, which would imply a link between the stellar population andthe ionization mechanism. High signal-to-noise ratio, ground-basedlong-slit spectra in the 3500-5500 Å interval were collected for60 galaxies: 51 LINERs and LINER/H II transition objects, two starburstgalaxies, and seven nonactive galaxies. In this paper, the first of aseries, we (1) describe the sample; (2) present the nuclear spectra; (3)characterize the stellar populations of LLAGNs by means of an empiricalcomparison with normal galaxies; (4) measure a set of spectral indices,including several absorption-line equivalent widths and colorsindicative of stellar populations; and (5) correlate the stellar indiceswith emission-line ratios that may distinguish between possibleexcitation sources for the gas. Our main findings are as follows: (1)Few LLAGNs have a detectable young (<~107 yr) starburstcomponent, indicating that very massive stars do not contributesignificantly to the optical continuum. In particular, no features dueto Wolf-Rayet stars were convincingly detected. (2) High-order Balmerabsorption lines of H I (HOBLs), on the other hand, are detected in ~40%of LLAGNs. These features, which are strongest in108-109 yr intermediate-age stellar populations,are accompanied by diluted metal absorption lines and bluer colors thanother objects in the sample. (3) These intermediate-age populations arevery common (~50%) in LLAGNs with relatively weak [O I] emission([OI]/Hα<=0.25) but rare (~10%) in LLAGNs with stronger [O I].This is intriguing since LLAGNs with weak [O I] have been previouslyhypothesized to be ``transition objects'' in which both an AGN and youngstars contribute to the emission-line excitation. Massive stars, ifpresent, are completely outshone by intermediate-age and old stars inthe optical. This happens in at least a couple of objects whereindependent UV spectroscopy detects young starbursts not seen in theoptical. (4) Objects with predominantly old stars span the whole rangeof [O I]/Hα values, but (5) sources with significant young and/orintermediate-age populations are nearly all (~90%) weak-[O I] emitters.These new findings suggest a link between the stellar populations andthe gas ionization mechanism. The strong-[O I] objects are most likelytrue LLAGNs, with stellar processes being insignificant. However, theweak-[O I] objects may comprise two populations, one where theionization is dominated by stellar processes and another where it isgoverned by either an AGN or a more even mixture of stellar and AGNprocesses. Possible stellar sources for the ionization include weakstarbursts, supernova remnants, and evolved poststarburst populations.These scenarios are examined and constrained by means of complementaryobservations and detailed modeling of the stellar populations inforthcoming communications.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canárias.

Peculiarities in the Formation of Molecular Clouds in the Central Regions of Spiral Galaxies
The limitations imposed by the shear instability on the formation ofgigantic molecular clouds in the central regions of spiral galaxies areexamined. The criteria obtained here are illustrated using the exampleof six galaxies for which the detailed rotation curves are known. Thedifferent mechanisms for formation of molecular clouds which apply inthe central and edge regions of disk galaxies are evaluated.

Radio Continuum Emission in Polar Ring Galaxies
We have used the Very Large Array aperture synthesis telescope toconduct a radio continuum survey of polar ring galaxies, at 20 cm and 6cm. Forty objects were observed at 20 cm with ~=5" resolution. Twenty(50%) of the program sources were detected at 20 cm, down to our 5σ limit of 0.5 mJy beam-1. This detection rate issimilar to those in surveys with comparable sensitivity for early-typegalaxies without polar rings. Sixteen of the objects we detected at 20cm were also observed at 6 cm. We show radio continuum maps for the fiveobjects in our sample that have noticeably extended emission. Ourspatial resolution was sufficient to distinguish emission originating inthe host galaxy from that in the polar ring. The radio morphology of theextended sources, as well as the ratio of radio to far-infrared flux andthe radio spectral indices of our detected sources, indicate that starformation, not nuclear activity, is the dominant source of the radiocontinuum emission in polar ring galaxies. However, the implied starformation rates are modest, and only one of our sample galaxies willconsume its supply of cool gas within 500 Myr.

Optical Imaging and Spectroscopy of the Edge-on Sbc Galaxy UGC 10043: Evidence for a Galactic Wind and a Peculiar Triaxial Bulge
We present new optical imaging and spectroscopy of the peculiar, edge-onSbc galaxy UGC 10043. Using the WIYN telescope, we have obtained B, R,and Hα+[NII] images, together with DensePak integral fieldspectroscopic measurements of the stellar Ca II infrared triplet and theHα and [N II] lines from the ionized gas. The imaging observationsshow that the inner bulge of UGC 10043 (a<=7.5") is elongatedperpendicular to the galaxy major axis. At larger r the bulge isophotestwist to become oblate and nearly circular, suggesting the bulge istriaxial. The bulge shows no clear evidence for rotation about eitherits major or minor axis. The inner, southwestern quadrant of the bulgeis girdled by a narrow dust lane parallel to the minor axis; unsharpmasking reveals that this minor-axis dust lane may be part of an innerpolar ring, although we find no unambiguous kinematic evidence oforthogonally rotating material. The stellar disk of UGC 10043 has arather low optical surface brightness [μ(0)R,i~23.2 magarcsec-2], a small scale height (hz=395 pc forD=33.4 Mpc), and a mild integral sign warp. A dusty, inner diskcomponent that appears tilted relative to the outlying disk is alsoseen. The Hα and [N II] emission lines in UGC 10043 resolve intomultiple velocity components, indicating the presence of a large-scalegalactic wind with an outflow velocity of Vout>~104 kms-1. Hα+[NII] imaging reaffirms this picture byrevealing ionized gas extended to |z|~3.5 kpc in the form of a roughlybiconical structure. The [N II]/Hα line intensity ratio increaseswith increasing distance from the plane, reaching values as high as 1.7.Unlike most galaxies with large-scale winds, UGC 10043 has only a modestglobal star formation rate (<~1 Msolar yr-1),implying the wind is powered by a rather feeble central starburst. Wediscuss evolutionary scenarios that could account for both thestructural complexities of UGC 10043 and its large-scale wind. The mostplausible scenarios require a major accretion or merger event at least afew gigayears ago.

The Stellar Content of the Polar Rings in the Galaxies NGC 2685 and NGC 4650A
We present the results of stellar photometry of polar ring galaxies NGC2685 and NGC 4650A, using the archival data obtained with the HubbleSpace Telescope's Wide Field Planetary Camera 2. Polar rings of thesegalaxies were resolved into ~800 and ~430 stellar objects in the B, V,and IC bands, a considerable part of which are bluesupergiants located in the young stellar complexes. The stellar featuresin the CM diagrams are best represented by isochrones with metallicityZ=0.008. The process of star formation in the polar rings of bothgalaxies was continuous, and the age of the youngest detected stars isabout 9 Myr for NGC 2685 and 6.5 Myr for NGC 4650A.Based on observations made with the NASA/ESO Hubble Space Telescope,obtained from the Space Telescope Science Institute, which is operatedby the Association of Universities for Research in Astronomy, Inc.,under NASA contract NAS 5-26555.

Super Star Cluster Nebula in the Starburst Galaxy NGC 660
We have mapped the starburst galaxy NGC 660 at 100mas resolution at Kband (1.3 cm) with the NRAO Very Large Array. A peculiar galaxy at adistance of 13 Mpc, NGC 660 contains concentrated central star formationof power ˜ 2 x 1010 Lsun. Our 1.3 cm continuumimage reveals a bright, compact source of less than 10 pc extent with arising spectral index. We infer that this is optically thick free-freeemission from a super star cluster nebula. The nebula is less than 10 pcin size, comparable in luminosity to the ``supernebula" in the dwarfgalaxy, NGC 5253. We estimate that there are a few thousand O starscontained in this single young cluster. There are a number of otherweaker continuum sources, either slightly smaller or more evolvedclusters of similar size within the central 300 parsecs of the galaxy.This work is supported in part by the National Science Foundation.

Further clues to the nature of composite LINER/H II galaxies
We have analyzed new, archival and published high resolution radio andX-ray observations of a sample of composite LINER/H II galaxies known toexhibit AGN-like properties. Five of the 16 AGN candidates havemilliarcsecond-scale detections and are found to display a compact, flatspectrum, high brightness temperature radio core, four of which alsoexhibit extended radio emission. Five of the eight AGN candidates withavailable high resolution X-ray observations were found to possess ahard X-ray nuclear source, two of which have no milliarcsecond radiodetection. The combined high resolution radio and X-ray data yield a 50%detection rate of low luminosity AGN among the AGN candidates, whichtranslates into a 12% detection rate for the entire composite LINER/H IIsample. In the sources where the AGN has been unambiguously detected,the ionizing power of the AGN is not sufficient to generate the observedemission lines, unless the hard X-rays are heavily obscured. We attemptto apply a canonical advection-dominated accretion flow (ADAF) and jetmodel to the sample sources in order to explain the observed radio andX-ray emission. While ADAFs may be responsible for the observed emissionin submillijansky radio cores like NGC 7331, they do not appearconsistent with the radio emission observed in the milliarcsecond-scaleradio detected cores; the latter sources are more likely to have anenergetically important contribution from a radio-emitting jet.

Photometric structure of polar-ring galaxies
The results of B, V, R surface photometry of three polar-ring galaxies(PRGs) - A 0017+2212, UGC 1198, UGC 4385 - are presented. The data wereacquired at the 6-m telescope of the Special Astrophysical Observatoryof the Russian Academy of Sciences. It was shown that all three galaxiesare peculiar late-type spirals in the state of ongoing interaction ormerging. We discuss available photometric properties of the PRGs withspiral hosts and consider the Tully-Fisher relation for different typesof PRGs. In agreement with Iodice et al. (\cite{Iodice03}), we haveshown that true PRGs demonstrate ˜1/3 larger maximum rotationvelocities than spiral galaxies of the same luminosity. Peculiar objectswith forming polar structures satisfy, on average, the Tully-Fisherrelation for disk galaxies but with large scatter.

A joint mid-infrared spectroscopic and X-ray imaging investigation of LINER galaxies
We present a comprehensive comparative high resolution mid-IRspectroscopic and X-ray imaging investigation of LINERs using archivalobservations from the ISO-SWS and the Chandra Advanced CCD ImagingSpectrometer. Although the sample is heterogenous and incomplete, thisis the first comprehensive study of the mid-infrared fine structure lineemission of LINERs. These results have been compared with similarobservations of starburst galaxies and AGN. We find that LINERs veryclearly fall between starbursts and AGN in their mid-IR fine structureline spectra, showing L[OIV]26 μm/LFIR andL[OIV]26 μm/L[NeII]12.8 μm ratios, bothmeasures of the dominant nuclear energy source in dust-enshroudedgalaxies, intermediate between those of AGN and starbursts. Chandraimaging observations of the LINERs reveal hard nuclear point sourcesmorphologically consistent with AGN in most (67%) of the sample, with aclear trend with IR-brightness. Most LINERs that show a single dominanthard compact X-ray core are IR-faint (LFIR/LB <1), whereas most LINERs that show scattered X-ray sources are IR-bright.A comparative X-ray/mid-IR spectroscopic investigation of LINERs revealssome puzzling results. Objects that display strong hard nuclear X-raycores should also display high excitation lines in the IR. However, wefind two LINERs disagree with this expectation. The galaxy NGC 404 showsweak soft X-ray emission consistent with a starburst but has the mostprominent highest excitation mid-IR spectrum of our entire sample. UsingIR emission line diagnostics alone, this galaxy would be classified ashosting a dominant AGN. Conversely, the IR luminous LINER NGC 6240 hasan extremely luminous binary AGN as revealed by the X-rays but showsweak IR emission lines. With the advent of SIRTF, and future IR missionssuch as Herschel and JWST, it is increasingly critical to determine theorigin of these multiwavelength anomalies.Table 2 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/825Table 3 is only available in electronic form athttp://www.edpsciences.org

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:01h43m01.80s
Aparent dimensions:6.31′ × 2.399′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 660

→ Request more catalogs and designations from VizieR