Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 6503



Upload your image

DSS Images   Other Images

Related articles

Lifetime of nuclear velocity dispersion drops in barred galaxies
We have made hydro/N-body simulations with and without star formation toshed some light on the conditions under which a central kinematicallycold stellar component (characterized by a velocity dispersion drop orσ-drop) could be created in a hot medium (e.g. a bulge) andsurvive enough time to be observed. We found that the time-scale for aσ-drop formation could be short (less than 500 Myr), whereas itslifetime could be long (more than 1 Gyr) provided that the centralregion is continuously or regularly fed by fresh gas which leads to acontinuous star formation activity. Star formation in the centralregion, even at a low rate as 1Msolaryr-1, ismandatory to sustain a permanent σ-drop by replacing heatedparticles by new low-σ ones. We moreover show that as soon as starformation is switched off, the σ-drop begins to disappear.

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

Masses of the local group and of the M81 group estimated from distortions in the local velocity field
Based on high precision measurements of the distances to nearby galaxieswith the Hubble telescope, we have determined the radii of the zerovelocity spheres for the local group, R0 =0.96±0.03Mpc, and for the group of galaxies around M 81/M 82,0.89±0.05Mpc. These yield estimates of MT =(1.29±0.14)· 1012 Mȯ and(1.03±0.17)· 1012 Mȯ,respectively, for the total masses of these groups. The R0method allows us to determine the mass ratios for the two brightestmembers in both groups, as well. By varying the position of the centerof mass between the two principal members of a group to obtain minimalscatter in the galaxies on a Hubble diagram, we find mass ratios of0.8:1.0 for our galaxy and Andromeda and 0.54:1.00 for the M82 and M81galaxies, in good agreement with the observed ratios of the luminositiesof these galaxies.

Objective Classification of Spiral Galaxies Having Extended Rotation Curves Beyond the Optical Radius
We carry out an objective classification of four samples of spiralgalaxies having extended rotation curves beyond the optical radius. Amultivariate statistical analysis (viz., principal component analysis[PCA]) shows that about 96% of the total variation is due to twocomponents, one being the combination of absolute blue magnitude andmaximum rotational velocity beyond the optical region and the otherbeing the central density of the halo. On the basis of PCA a fundamentalplane has been constructed that reduces the scatter in the Tully-Fisherrelation up to a maximum of 16%. A multiple stepwise regression analysisof the variation of the overall shape of the rotation curves shows thatit is mainly determined by the central surface brightness, while theshape purely in the outer part of the galaxy (beyond the optical radius)is mainly determined by the size of the galactic disk.

On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies
We investigate the relation between X-ray nuclear emission, opticalemission line luminosities and black hole masses for a sample of 47Seyfert galaxies. The sample, which has been selected from the Palomaroptical spectroscopic survey of nearby galaxies (Ho et al. 1997a, ApJS,112, 315), covers a wide range of nuclear powers, from L2-10keV ~ 1043 erg/s down to very low luminosities(L2-10 keV ~ 1038 erg/s). Best available data fromChandra, XMM-Newton and, in a few cases, ASCA observations have beenconsidered. Thanks to the good spatial resolution available from theseobservations and a proper modeling of the various spectral components,it has been possible to obtain accurate nuclear X-ray luminosities notcontaminated by off-nuclear sources and/or diffuse emission. X-rayluminosities have then been corrected taking into account the likelycandidate Compton thick sources, which are a high fraction (>30%)among type 2 Seyferts in our sample. The main result of this study isthat we confirm strong linear correlations between 2-10 keV,[OIII]λ5007, Hα luminosities which show the same slope asquasars and luminous Seyfert galaxies, independent of the level ofnuclear activity displayed. Moreover, despite the wide range ofEddington ratios (L/L_Edd) tested here (six orders of magnitude, from0.1 down to ~10-7), no correlation is found between the X-rayor optical emission line luminosities and the black hole mass. Ourresults suggest that Seyfert nuclei in our sample are consistent withbeing a scaled-down version of more luminous AGN.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

Massive star formation in the central regions of spiral galaxies
Context: . The morphology of massive star formation in the centralregions of galaxies is an important tracer of the dynamical processesthat govern the evolution of disk, bulge, and nuclear activity. Aims. Wepresent optical imaging of the central regions of a sample of 73 spiralgalaxies in the Hα line and in optical broad bands, and deriveinformation on the morphology of massive star formation. Methods. Weobtained images with the William Herschel Telescope, mostly at a spatialresolution of below one second of arc. For most galaxies, no Hαimaging is available in the literature. We outline the observing anddata reduction procedures, list basic properties, and present the I-bandand continuum-subtracted Hα images. We classify the morphology ofthe nuclear and circumnuclear Hα emission and explore trends withhost galaxy parameters. Results. We confirm that late-type galaxies havea patchy circumnuclear appearance in Hα, and that nuclear ringsoccur primarily in spiral types Sa-Sbc. We identify a number ofpreviously unknown nuclear rings, and confirm that nuclear rings arepredominantly hosted by barred galaxies. Conclusions. Other than instimulating nuclear rings, bars do not influence the relative strengthof the nuclear Hα peak, nor the circumnuclear Hα morphology.Even considering that our selection criteria led to an over-abundance ofgalaxies with close massive companions, we do not find any significantinfluence of the presence or absence of a close companion on therelative strength of the nuclear Hα peak, nor on the Hαmorphology around the nucleus.

X-ray observations of the edge-on star-forming galaxy NGC 891 and its supernova SN1986J
We present XMM-Newton observations of NGC 891, a nearby edge-on spiralgalaxy. We analyse the extent of the diffuse emission emitted from thedisc of the galaxy, and find that it has a single-temperature profilewith best-fitting temperature of 0.26 keV, though the fit of adual-temperature plasma with temperatures of 0.08 and 0.30 keV is alsoacceptable. There is a considerable amount of diffuse X-ray emissionprotruding from the disc in the north-west direction out toapproximately 6 kpc. We analyse the point-source population using aChandra observation, using a maximum-likelihood method to find that theslope of the cumulative luminosity function of point sources in thegalaxy is -0.77+0.13-0.1. Using a sample of otherlocal galaxies, we compare the X-ray and infrared properties of NGC 891with those of `normal' and starburst spiral galaxies, and conclude thatNGC 891 is most likely a starburst galaxy in a quiescent state. Weestablish that the diffuse X-ray luminosity of spirals scales with thefar-infrared luminosity asLX~L0.87+/-0.07FIR, except for extremestarbursts, and NGC 891 does not fall in the latter category. We studythe supernova SN1986J in both XMM-Newton and Chandra observations, andfind that the X-ray luminosity has been declining with time more steeplythan expected (LX~t-3).

Structure and kinematics of edge-on galaxy discs - V. The dynamics of stellar discs
In earlier papers in this series we determined the intrinsic stellardisc kinematics of 15 intermediate- to late-type edge-on spiral galaxiesusing a dynamical modelling technique. The sample covers a substantialrange in maximum rotation velocity and deprojected face-on surfacebrightness, and contains seven spirals with either a boxy orpeanut-shaped bulge. Here we discuss the structural, kinematical anddynamical properties. From the photometry we find that intrinsicallymore flattened discs tend to have a lower face-on central surfacebrightness and a larger dynamical mass-to-light ratio. This observationsuggests that, at a constant maximum rotational velocity, lower surfacebrightness discs have smaller vertical stellar velocity dispersions.Although the individual uncertainties are large, we find from thedynamical modelling that at least 12 discs are submaximal. The averagedisc contributes 53 +/- 4 per cent to the observed rotation at 2.2 discscalelengths (hR), with a 1σ scatter of 15 per cent.This percentage becomes somewhat lower when effects of finite discflattening and gravity by the dark halo and the gas are taken intoaccount. Since boxy and peanut-shaped bulges are probably associatedwith bars, the result suggests that at 2.2hR the submaximalnature of discs is independent of barredness. The possibility remainsthat very high surface brightness discs are maximal, as these discs areunderrepresented in our sample. We confirm that the radial stellar discvelocity dispersion is related to the galaxy maximum rotationalvelocity. The scatter in this σ versus vmax relationappears to correlate with the disc flattening, face-on central surfacebrightness and dynamical mass-to-light ratio. Low surface brightnessdiscs tend to be more flattened and have smaller stellar velocitydispersions. The findings are consistent with the observed correlationbetween disc flattening and dynamical mass-to-light ratio and cangenerally be reproduced by the simple collapse theory for disc galaxyformation. Finally, the disc mass Tully-Fisher relation is offset fromthe maximum-disc scaled stellar mass Tully-Fisher relation of the UrsaMajor cluster. This offset, -0.3 dex in mass, is naturally explained ifthe discs of the Ursa Major cluster spirals are submaximal.

The stellar populations of low-luminosity active galactic nuclei - III. Spatially resolved spectral properties
In a recently completed survey of the stellar population properties oflow-ionization nuclear emission-line regions (LINERs) and LINER/HIItransition objects (TOs), we have identified a numerous class ofgalactic nuclei which stand out because of their conspicuous108-9 yr populations, traced by high-order Balmer absorptionlines and other stellar indices. These objects are called `young-TOs',because they all have TO-like emission-line ratios. In this paper weextend this previous work, which concentrated on the nuclear properties,by investigating the radial variations of spectral properties inlow-luminosity active galactic nuclei (LLAGNs). Our analysis is based onhigh signal-to-noise ratio (S/N) long-slit spectra in the 3500-5500Å interval for a sample of 47 galaxies. The data probe distancesof typically up to 850 pc from the nucleus with a resolution of ~100 pc(~1 arcsec) and S/N ~ 30. Stellar population gradients are mapped by theradial profiles of absorption-line equivalent widths and continuumcolours along the slit. These variations are further analysed by meansof a decomposition of each spectrum in terms of template galaxiesrepresentative of very young (<=107 yr), intermediate age(108-9 yr) and old (1010 yr) stellar populations.This study reveals that young-TOs also differ from old-TOs andold-LINERs in terms of the spatial distributions of their stellarpopulations and dust. Specifically, our main findings are as follows.(i) Significant stellar population gradients are found almostexclusively in young-TOs. (ii) The intermediate age population ofyoung-TOs, although heavily concentrated in the nucleus, reachesdistances of up to a few hundred pc from the nucleus. Nevertheless, thehalf width at half-maximum of its brightness profile is more typically100 pc or less. (iii) Objects with predominantly old stellar populationspresent spatially homogeneous spectra, be they LINERs or TOs. (iv)Young-TOs have much more dust in their central regions than otherLLAGNs. (v) The B-band luminosities of the central <~1 Gyr populationin young-TOs are within an order of magnitude of MB=-15,implying masses of the order of ~107-108Msolar. This population was 10-100 times more luminous in itsformation epoch, at which time young massive stars would have completelyoutshone any active nucleus, unless the AGN too was brighter in thepast.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies
I investigate the baryonic Tully-Fisher relation for a sample ofgalaxies with extended 21 cm rotation curves spanning the range 20 kms-1<~Vf<=300 km s-1. A variety ofscalings of the stellar mass-to-light ratio Υ* areconsidered. For each prescription for Υ*, I give fitsof the form Md=AVxf.Presumably, the prescription that comes closest to the correct valuewill minimize the scatter in the relation. The fit with minimum scatterhas A=50 Msolar km-4 s4 andx=4. This relation holds over five decades in mass. Galaxy color,stellar fraction, and Υ* are correlated with eachother and with Md, in the sense that more massivegalaxies tend to be more evolved. There is a systematic dependence ofthe degree of maximality of disks on surface brightness. High surfacebrightness galaxies typically have Υ*~3/4 of themaximum disk value, while low surface brightness galaxies typicallyattain ~1/4 of this amount.

On the Relation between Circular Velocity and Central Velocity Dispersion in High and Low Surface Brightness Galaxies
In order to investigate the correlation between the circular velocityVc and the central velocity dispersion of the spheroidalcomponent σc, we analyzed these quantities for a sampleof 40 high surface brightness (HSB) disk galaxies, eight giant lowsurface brightness (LSB) spiral galaxies, and 24 elliptical galaxiescharacterized by flat rotation curves. Galaxies have been selected tohave a velocity gradient <=2 km s-1 kpc-1 forR>=0.35R25. We used these data to better define theprevious Vc-σc correlation for spiralgalaxies (which turned out to be HSB) and elliptical galaxies,especially at the lower end of the σc values. We findthat the Vc-σc relation is described by alinear law out to velocity dispersions as low as σc~50km s-1, while in previous works a power law was adopted forgalaxies with σc>80 km s-1. Ellipticalgalaxies with Vc based on dynamical models or directlyderived from the H I rotation curves follow the same relation as the HSBgalaxies in the Vc-σc plane. On the otherhand, the LSB galaxies follow a different relation, since most of themshow either higher Vc or lower σc withrespect to the HSB galaxies. This argues against the relevance of baryoncollapse to the radial density profile of the dark matter halos of LSBgalaxies. Moreover, if the Vc-σc relation isequivalent to one between the mass of the dark matter halo and that ofthe supermassive black hole, then these results suggest that the LSBgalaxies host a supermassive black hole (SMBH) with a smaller masscompared to HSB galaxies with an equal dark matter halo. On the otherhand, if the fundamental correlation of SMBH mass is with the halocircular velocity, then LSB galaxies should have larger black holemasses for a given bulge dispersion. Elliptical galaxies withVc derived from H I data and LSB galaxies were not consideredin previous studies.Based on observations made with European Southern Observatory telescopesat the Paranal Observatory under programs 67.B-0283, 69.B-0573, and70.B-0171.

Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks
Present in over 45% of local spirals, boxy and peanut-shaped bulges aregenerally interpreted as edge-on bars and may represent a key phase inbar evolution. Aiming to test such claims, the kinematic properties ofself-consistent three-dimensional N-body simulations of bar-unstabledisks are studied. Using Gauss-Hermite polynomials to describe themajor-axis stellar kinematics, a number of characteristic bar signaturesare identified in edge-on disks: (1) a major-axis light profile with aquasi-exponential central peak and a plateau at moderate radii (Freemantype II profile); (2) a ``double-hump'' rotation curve; (3) a sometimesflat central velocity dispersion peak with a plateau at moderate radiiand occasional local central minimum and secondary peak; and (4) anh3-V correlation over the projected bar length. All of thesekinematic features are spatially correlated and can easily be understoodfrom the orbital structure of barred disks. They thus provide a reliableand easy-to-use tool to identify edge-on bars. Interestingly, they areall produced without dissipation and are increasingly realized to becommon in spirals, lending support to bar-driven evolution scenarios forbulge formation. So called ``figure-of-eight'' position-velocitydiagrams are never observed, as expected for realistic orbitalconfigurations. Although not uniquely related to triaxiality,line-of-sight velocity distributions with a high-velocity tail (i.e., anh3-V correlation) appear as particularly promising tracers ofbars. The stellar kinematic features identified grow in strength as thebar evolves and vary only slightly for small inclination variations.Many can be used to trace the bar length. Comparisons with observationsare encouraging and support the view that boxy and peanut-shaped bulgesare simply thick bars viewed edge-on.

A Chandra Snapshot Survey of Infrared-bright LINERs: A Possible Link Between Star Formation, Active Galactic Nucleus Fueling, and Mass Accretion
We present results from a high-resolution X-ray imaging study of nearbyLINERs observed by ACIS on board Chandra. This study complements andextends previous X-ray studies of LINERs, focusing on the underexploredpopulation of nearby dust-enshrouded infrared-bright LINERs. The sampleconsists of 15 IR-bright LINERs (LFIR/LB>3),with distances that range from 11 to 26 Mpc. Combining our sample withprevious Chandra studies, we find that ~51% (28/55) of the LINERsdisplay compact hard X-ray cores. The nuclear 2-10 keV luminosities ofthe galaxies in this expanded sample range from ~2×1038to ~2×1044 ergs s-1. We find that the mostextreme IR-faint LINERs are exclusively active galactic nuclei (AGNs).The fraction of LINERs containing AGNs appears to decrease with IRbrightness and increase again at the highest values ofLFIR/LB. We find that of the 24 LINERs showingcompact nuclear hard X-ray cores in the expanded sample that wereobserved at Hα wavelengths, only eight actually show evidence of abroad line. Similarly, of the 14 LINERs showing compact nuclear hardX-ray cores with corresponding radio observations, only eight display acompact flat spectrum radio core. These findings emphasize the need forhigh-resolution X-ray imaging observations in the study of IR-brightLINERs. Finally, we find an intriguing trend in the Eddington ratioversus LFIR and LFIR/LB for theAGN-LINERs in the expanded sample that extends over 7 orders ofmagnitude in L/LEdd. This correlation may imply a linkbetween black hole growth, as measured by the Eddington ratio, and thestar formation rate, as measured by the far-IR luminosity andIR-brightness ratio. If the far-IR luminosity is an indicator of themolecular gas content in our sample of LINERs, our results may furtherindicate that the mass accretion rate scales with the host galaxy's fuelsupply. We discuss the potential implications of our results in theframework of black hole growth and AGN fueling in low-luminosity AGNs.

Light-to-Mass Variations with Environment
Large and well-defined variations exist between the distribution of massand the light of stars on extragalactic scales. Mass concentrations inthe range 1012-1013 Msolar manifest themost light per unit mass. Group halos in this range are typically thehosts of spiral and irregular galaxies with ongoing star formation. Onaverage M/LB~90 Msolar/Lsolar in thesegroups . More massive halos have less light per unit mass. Within agiven mass range, halos that are dynamically old as measured by crossingtimes and galaxy morphologies have distinctly less light per unit mass.At the other end of the mass spectrum, below 1012Msolar, there is a cutoff in the manifestation of light.Group halos in the range 1011-1012Msolar can host dwarf galaxies but with such low luminositiesthat M/LB values can range from several hundred to severalthousand. It is suspected that there must be completely dark halos atlower masses. Given the form of the halo mass function, the low relativeluminosities of the high-mass halos have the greatest cosmologicalimplications. Of order half the clustered mass may reside in halos withgreater than 1014 Msolar. By contrast, only 5%-10%of clustered mass would lie in entities with less than 1012Msolar.

A fundamental relation between supermassive black holes and dark matter haloes.
Not Available

Tracing the relation between black holes and dark haloes
We present new velocity dispersion measurements for a set of 12 spiralgalaxies and use them to derive a more accurate v_c-σ relationwhich holds for a wide morphological range of galaxies. Combined withthe MBH-σ relation, this relation can be used as a toolto estimate supermassive black hole (SMBH) masses by means of theasymptotic circular velocity. Together with the Tully-Fisher relation,it serves as a constraint for galaxy formation and evolution models.

Stellar Velocity Dispersion and Mass Estimation for Galactic Disks
Available velocity dispersion estimates for the old stellar populationof galactic disks at galactocentric distances r=2L (where L is thephotometric radial scale length of the disk) are used to determine thethreshold local surface density of disks that are stable againstgravitational perturbations. The mass of the disk Mdcalculated under the assumption of its marginal stability is comparedwith the total mass Mt and luminosity LB of thegalaxy within r=4L. We corroborate the conclusion that a substantialfraction of the mass in galaxies is probably located in their darkhalos. The ratio of the radial velocity dispersion to the circularvelocity increases along the sequence of galactic color indices anddecreases from the early to late morphological types. For most of thegalaxies with large color indices (B-V)0 > 0.75, whichmainly belong to the S0 type, the velocity dispersion exceedssignificantly the threshold value required for the disk to be stable.The reverse situation is true for spiral galaxies: the ratiosMd/LB for these agree well with those expected forevolving stellar systems with the observed color indices. This suggeststhat the disks of spiral galaxies underwent no significant dynamicalheating after they reached a quasi-equilibrium stable state.

The Ultraluminous X-Ray Source Population from the Chandra Archive of Galaxies
One hundred fifty-four discrete non-nuclear ultraluminous X-ray (ULX)sources, with spectroscopically determined intrinsic X-ray luminositiesgreater than 1039 ergs s-1, are identified in 82galaxies observed with Chandra's Advanced CCD Imaging Spectrometer.Source positions, X-ray luminosities, and spectral and timingcharacteristics are tabulated. Statistical comparisons between theseX-ray properties and those of the weaker discrete sources in the samefields (mainly neutron star and stellar-mass black hole binaries) aremade. Sources above ~1038 ergs s-1 display similarspatial, spectral, color, and variability distributions. In particular,there is no compelling evidence in the sample for a new and distinctclass of X-ray object such as the intermediate-mass black holes.Eighty-three percent of ULX candidates have spectra that can bedescribed as absorbed power laws with index <Γ>=1.74 andcolumn density =2.24×1021cm-2, or ~5 times the average Galactic column. About 20% ofthe ULXs have much steeper indices indicative of a soft, and likelythermal, spectrum. The locations of ULXs in their host galaxies arestrongly peaked toward their galaxy centers. The deprojected radialdistribution of the ULX candidates is somewhat steeper than anexponential disk, indistinguishable from that of the weaker sources.About 5%-15% of ULX candidates are variable during the Chandraobservations (which average 39.5 ks). Comparison of the cumulative X-rayluminosity functions of the ULXs to Chandra Deep Field results suggests~25% of the sources may be background objects, including 14% of the ULXcandidates in the sample of spiral galaxies and 44% of those inelliptical galaxies, implying the elliptical galaxy ULX population isseverely compromised by background active galactic nuclei. Correlationswith host galaxy properties confirm the number and total X-rayluminosity of the ULXs are associated with recent star formation andwith galaxy merging and interactions. The preponderance of ULXs instar-forming galaxies as well as their similarities to less-luminoussources suggest they originate in a young but short-lived populationsuch as the high-mass X-ray binaries with a smaller contribution (basedon spectral slope) from recent supernovae. The number of ULXs inelliptical galaxies scales with host galaxy mass and can be explainedmost simply as the high-luminosity end of the low-mass X-ray binarypopulation.

A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. I. Spatial and Spectral Properties of the Diffuse X-Ray Emission
We present arcsecond resolution Chandra X-ray and ground-based opticalHα imaging of a sample of 10 edge-on star-forming disk galaxies(seven starburst and three ``normal'' spiral galaxies), a sample thatcovers the full range of star formation intensity found in diskgalaxies. The X-ray observations make use of the unprecedented spatialresolution of the Chandra X-ray observatory to more robustly than beforeremove X-ray emission from point sources and hence obtain the X-rayproperties of the diffuse thermal emission alone. We have combined theX-ray observations with existing, comparable-resolution, ground-basedHα and R-band imaging and present a mini-atlas of images on acommon spatial and surface brightness scale to aid cross-comparison. Ingeneral, the morphology of the extraplanar diffuse X-ray emission isvery similar to the extraplanar Hα filaments and arcs, on bothsmall and large scales (scales of tens of parsecs and kiloparsecs,respectively). The most spectacular cases of this are found in NGC 1482(for which we provide the first published X-ray observation) and NGC3079. We provide a variety of quantitative measures of how the spectralhardness and surface brightness of the diffuse X-ray emission varieswith increasing height z above the plane of each galaxy. Of the eightgalaxies in which diffuse X-ray emitting halos are found (the starburstsand the normal spiral NGC 891), significant spatial variation in thespectral properties of the extraplanar emission (|z|>=2 kpc) is onlyfound in two cases: NGC 3628 and NGC 4631. In general, the verticaldistribution of the halo-region X-ray surface brightness is bestdescribed as an exponential, with the observed scale heights of thesample galaxies lying in the range Heff~2-4 kpc. The presenceof extraplanar X-ray emission is always associated with the presence ofextraplanar optical line emission of similar vertical extent. No X-rayemission was detected from the halos of the two low-mass normal spiralgalaxies NGC 6503 and NGC 4244. Active galactic nuclei, where present,appear to play no role in powering or shaping the outflows from thestarburst galaxies in this sample. The Chandra ACIS X-ray spectra ofextraplanar emission from all these galaxies can be fitted with a commontwo-temperature spectral model with an enhanced α-to-iron elementratio. This is consistent with the origin of the X-ray emitting gasbeing either metal-enriched merged SN ejecta or shock-heated ambienthalo or disk material with moderate levels of metal depletion onto dust.Our favored model is that SN feedback in the disks of star-forminggalaxies create, via blow-out and venting of hot gas from the disk,tenuous exponential atmospheres of density scale heightHg~4-8 kpc. The soft thermal X-ray emission observed in thehalos of the starburst galaxies is either this preexisting halo medium,which has been swept up and shock-heated by the starburst-driven wind,or wind material compressed near the walls of the outflow by reverseshocks within the wind. In either case, the X-ray emission provides uswith a powerful probe of the properties of gaseous halos aroundstar-forming disk galaxies.

The Planetary Nebula System of M33
We report the results of a photometric and spectroscopic survey forplanetary nebulae (PNs) over the entire body of the Local Group spiralgalaxy M33. We use our sample of 152 PNs to show that the bright end ofthe galaxy's [O III] λ5007 planetary nebula luminosity function(PNLF) has the same sharp cutoff seen in other galaxies. The apparentmagnitude of this cutoff, along with the IRAS DIRBE foregroundextinction estimate of E(B-V)=0.041, implies a distance modulus for thegalaxy of (m-M)0=24.86+0.07-0.11(0.94+0.03-0.05 Mpc). Although this value is ~15%larger than the galaxy's Cepheid distance, the discrepancy likely arisesfrom differing assumptions about the system's internal extinction. Ourphotometry, which extends more than 3 mag down the PNLF, also revealsthat the faint end of M33's PNLF is nonmonotonic, with an inflectionpoint ~2 mag below the PNLF's bright limit. We argue that this featureis due to the galaxy's large population of high core mass planetariesand that its amplitude may eventually be a useful diagnostic for studiesof stellar populations. Fiber-coupled spectroscopy of 140 of the PNcandidates confirms that M33's PN population rotates along with the olddisk, with a small asymmetric drift of ~10 km s-1.Remarkably, the population's line-of-sight velocity dispersion varieslittle over ~4 optical disk scale lengths, with σrad~20km s-1. We show that this is due to a combination of factors,including a decline in the radial component of the velocity ellipsoid atsmall galactocentric radii and a gradient in the ratio of the verticalto radial velocity dispersion. We use our data to derive the dynamicalscale length of M33's disk and the disk's mass-to-light ratio. Our mostlikely solution suggests that the surface mass density of M33's diskdecreases exponentially, but with a scale length that is ~2.3 timeslarger than that of the system's IR luminosity. The large scale lengthalso implies that the disk's V-band mass-to-light ratio changes fromM/LV~0.3 in the galaxy's inner regions to M/LV~2.0at ~9 kpc. Models in which the dark matter is distributed in the planeof the galaxy are excluded by our data.

A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. II. Quantifying Supernova Feedback
We investigate how the empirical properties of hot X-ray-emitting gas ina sample of seven starburst and three normal edge-on spiral galaxies (asample that covers the full range of star formation intensity found indisk galaxies) correlate with the size, mass, star formation rate, andstar formation intensity in the host galaxies. From this analysis weinvestigate various aspects of mechanical energy ``feedback''-the returnof energy to the interstellar medium from massive star supernovae andstellar winds-on galactic scales. The X-ray observations make use of theunprecedented spatial resolution of the Chandra X-Ray Observatory toremove X-ray emission from point sources more accurately than in anyprevious study and hence obtain the X-ray properties of the diffusethermal emission alone. Intriguingly, the diffuse X-ray properties ofthe normal spirals (in both their disks and halos) fall whereextrapolation of the trends from the starburst galaxies with superwindswould predict. We demonstrate, using a variety of multiwavelength starformation rate and intensity indicators, that the luminosity of diffuseX-ray emission in the disk (and, where detected, in the halo) isdirectly proportional to the rate of mechanical energy feedback frommassive stars in the host galaxies. Accretion of gas from theintergalactic medium (IGM) does not appear to be a significantcontributor to the diffuse X-ray emission in this sample. Nevertheless,with only three nonstarburst normal spiral galaxies it is hard toexclude an accretion-based origin for extraplanar diffuse X-ray emissionaround normal star-forming galaxies. Larger galaxies tend to have moreextended X-ray-emitting halos, but galaxy mass appears to play no rolein determining the properties of the disk or extraplanar X-ray-emittingplasma. The combination of these luminosity and size correlations leadsto a correlation between the surface brightness of the diffuse X-rayemission and the mean star formation rate per unit area in the disk(calculated from the far-infrared luminosity and the optical size of thegalaxy, LFIR/D225). Furtherobservational work of this form will allow empirical constraints to bemade on the critical star formation rate per unit disk area necessary toblow hot gas out of the disk into the halo. We show that a minorgeneralization of standard superbubble theory directly predicts acritical star formation rate per unit area for superbubble blowout fromthe disk and by extension for superwinds to blow out of the gaseoushalos of their host galaxy. At present there are a variety of poorlyknown parameters in this theory that complicate comparison betweenobservation and theory, making it impossible to assess the quantitativeaccuracy of standard superbubble blowout theory. We argue that thecrucial spatial region around a galaxy that controls whether gas instarburst-driven superwinds will escape into the IGM is not the outerhalo ~100 kpc from the host galaxy, but the inner few halo scaleheights, within ~20 kpc of the galaxy plane. Given the properties of thegaseous halos we observe, superwind outflows from disk galaxies of massM~1010-1011 Msolar should still ejectsome fraction of their material into the IGM.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations
We present a spectroscopic study of the stellar populations oflow-luminosity active galactic nuclei (LLAGNs). Our main goal is todetermine whether the stars that live in the innermost (100 pc scale)regions of these galaxies are in some way related to the emission-lineproperties, which would imply a link between the stellar population andthe ionization mechanism. High signal-to-noise ratio, ground-basedlong-slit spectra in the 3500-5500 Å interval were collected for60 galaxies: 51 LINERs and LINER/H II transition objects, two starburstgalaxies, and seven nonactive galaxies. In this paper, the first of aseries, we (1) describe the sample; (2) present the nuclear spectra; (3)characterize the stellar populations of LLAGNs by means of an empiricalcomparison with normal galaxies; (4) measure a set of spectral indices,including several absorption-line equivalent widths and colorsindicative of stellar populations; and (5) correlate the stellar indiceswith emission-line ratios that may distinguish between possibleexcitation sources for the gas. Our main findings are as follows: (1)Few LLAGNs have a detectable young (<~107 yr) starburstcomponent, indicating that very massive stars do not contributesignificantly to the optical continuum. In particular, no features dueto Wolf-Rayet stars were convincingly detected. (2) High-order Balmerabsorption lines of H I (HOBLs), on the other hand, are detected in ~40%of LLAGNs. These features, which are strongest in108-109 yr intermediate-age stellar populations,are accompanied by diluted metal absorption lines and bluer colors thanother objects in the sample. (3) These intermediate-age populations arevery common (~50%) in LLAGNs with relatively weak [O I] emission([OI]/Hα<=0.25) but rare (~10%) in LLAGNs with stronger [O I].This is intriguing since LLAGNs with weak [O I] have been previouslyhypothesized to be ``transition objects'' in which both an AGN and youngstars contribute to the emission-line excitation. Massive stars, ifpresent, are completely outshone by intermediate-age and old stars inthe optical. This happens in at least a couple of objects whereindependent UV spectroscopy detects young starbursts not seen in theoptical. (4) Objects with predominantly old stars span the whole rangeof [O I]/Hα values, but (5) sources with significant young and/orintermediate-age populations are nearly all (~90%) weak-[O I] emitters.These new findings suggest a link between the stellar populations andthe gas ionization mechanism. The strong-[O I] objects are most likelytrue LLAGNs, with stellar processes being insignificant. However, theweak-[O I] objects may comprise two populations, one where theionization is dominated by stellar processes and another where it isgoverned by either an AGN or a more even mixture of stellar and AGNprocesses. Possible stellar sources for the ionization include weakstarbursts, supernova remnants, and evolved poststarburst populations.These scenarios are examined and constrained by means of complementaryobservations and detailed modeling of the stellar populations inforthcoming communications.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canárias.

On the Observed Rapid Motions in Extragalactic Radio Sources
Using interferometric methods, radio astronomers have shown that veryrapid motions involving radio jets are detectable in a variety of activecenters: the nuclei of low-redshift radio galaxies, QSOs and BL Lacobjects, and active binary systems containing a black hole or a neutronstar in our own Galaxy. By comparing the positions of about 80extragalactic sources of this type with the position of the galaxies inthe de Vaucouleurs catalog and the updated QSO catalog ofVéron-Cetty and Véron, it is shown that about 50% of themlie within 1° of a low-redshift spiral galaxy, and about 15% lie soclose to galaxies (Δθ<=10') that theassociations are highly significant. Thus, the sources are probablyphysically associated with these galaxies. All the galaxies areclassified as spiral. In addition, many of the sources have other QSOslying very close to them. These results suggest that the motionsobserved in these radio sources, as well as in the nuclei of radiogalaxies and in Galactic microquasars, and perhaps in many more QSOs andother objects, are all similar and are mildly relativistic, and they donot require us to invoke large Lorentz factors. Some of the problemsassociated with this picture are discussed.

Old and Young X-Ray Point Source Populations in Nearby Galaxies
We have analyzed Chandra ACIS observations of 32 nearby spiral andelliptical galaxies and present the results of 1441 X-ray point sourcesthat were detected in these galaxies. The total point-source X-ray(0.3-8.0 keV) luminosity LXP is well correlated with theB-band, K-band, and FIR+UV luminosities of spiral host galaxies and iswell correlated with the B-band and K-band luminosities of ellipticalgalaxies. This suggests an intimate connection between LXPand both the old and young stellar populations, for which K and FIR+UVluminosities are reasonable proxies for the galaxy mass M and starformation rate SFR. We derive proportionality constantsα=1.3×1029 ergs s-1M-1solar and β=0.7×1039 ergss-1 (Msolar yr-1)-1, whichcan be used to estimate the old and young components from M and SFR,respectively. The cumulative X-ray luminosity functions for the pointsources have significantly different slopes. For the spiral andstarburst galaxies, γ~0.6-0.8, and for the elliptical galaxies,γ~1.4. This implies that the most luminous point sources-thosewith LX>~1038 ergss-1-dominate LXP for the spiral andstarburst galaxies. Most of the point sources have X-ray colors that areconsistent with soft-spectrum (photon index Γ~1-2) low-mass X-raybinaries, accretion-powered black hole high-mass X-ray binaries (BHHMXBs), or ultraluminous X-ray sources (ULXs, also known as IXOs). Werule out hard-spectrum neutron star HMXBs (e.g., accretion-powered X-raypulsars) as contributing much to LXP. Thus, for spirals,LXP is dominated by ULXs and BH HMXBs. We find no discernibledifference between the X-ray colors of ULXs(LX>=1039 ergs s-1) in spiralgalaxies and point sources withLX~1038-1039 ergs s-1. Weestimate that >~20% of all ULXs found in spirals originate from theolder (Population II) stellar populations, indicating that many of theULXs that have been found in spiral galaxies are in fact Population IIULXs, like those in elliptical galaxies. We find that LXPdepends linearly (within uncertainties) on both M and SFR for our samplegalaxies (M<~1011 Msolar and SFR<~10Msolar yr-1).

A New Nonparametric Approach to Galaxy Morphological Classification
We present two new nonparametric methods for quantifying galaxymorphology: the relative distribution of the galaxy pixel flux values(the Gini coefficient or G) and the second-order moment of the brightest20% of the galaxy's flux (M20). We test the robustness of Gand M20 to decreasing signal-to-noise ratio (S/N) and spatialresolution and find that both measures are reliable to within 10% forimages with average S/N per pixel greater than 2 and resolutions betterthan 1000 and 500 pc, respectively. We have measured G andM20, as well as concentration (C), asymmetry (A), andclumpiness (S) in the rest-frame near-ultraviolet/optical wavelengthsfor 148 bright local ``normal'' Hubble-type galaxies (E-Sd) galaxies, 22dwarf irregulars, and 73 0.05

A Catalog of Neighboring Galaxies
We present an all-sky catalog of 451 nearby galaxies, each having anindividual distance estimate D<~10 Mpc or a radial velocityVLG<550 km s-1. The catalog contains data onbasic optical and H I properties of the galaxies, in particular, theirdiameters, absolute magnitudes, morphological types, circumnuclearregion types, optical and H I surface brightnesses, rotationalvelocities, and indicative mass-to-luminosity and H I mass-to-luminosityratios, as well as a so-called tidal index, which quantifies the galaxyenvironment. We expect the catalog completeness to be roughly 70%-80%within 8 Mpc. About 85% of the Local Volume population are dwarf (dIr,dIm, and dSph) galaxies with MB>-17.0, which contributeabout 4% to the local luminosity density, and roughly 10%-15% to thelocal H I mass density. The H I mass-to-luminosity and the H Imass-to-total (indicative) mass ratios increase systematically fromgiant galaxies toward dwarfs, reaching maximum values about 5 in solarunits for the most tiny objects. For the Local Volume disklike galaxies,their H I masses and angular momentum follow Zasov's linear relation,expected for rotating gaseous disks being near the threshold ofgravitational instability, favorable for active star formation. We foundthat the mean local luminosity density exceeds 1.7-2.0 times the globaldensity, in spite of the presence of the Tully void and the absence ofrich clusters in the Local Volume. The mean local H I density is 1.4times its ``global'' value derived from the H I Parkes Sky Survey.However, the mean local baryon densityΩb(<8Mpc)=2.3% consists of only a half of the globalbaryon density, Ωb=(4.7+/-0.6)% (Spergel et al.,published in 2003). The mean-square pairwise difference of radialvelocities is about 100 km s-1 for spatial separations within1 Mpc, increasing to ~300 km s-1 on a scale of ~3 Mpc. alsoWe calculated the integral area of the sky occupied by the neighboringgalaxies. Assuming the H I size of spiral and irregular galaxies to be2.5 times their standard optical diameter and ignoring any evolutioneffect, we obtain the expected number of the line-of-sight intersectionswith the H I galaxy images to be dn/dz~0.4, which does not contradictthe observed number of absorptions in QSO spectra.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:17h49m26.50s
Aparent dimensions:6.761′ × 2.239′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 6503

→ Request more catalogs and designations from VizieR