Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 5170



Upload your image

DSS Images   Other Images

Related articles

Discovery of a very extended X-ray halo around a quiescent spiral galaxy The “missing link” of galaxy formation
Hot gaseous haloes surrounding galaxies and extending well beyond thedistribution of stars are a ubiquitous prediction of galaxy formationscenarios. The haloes are believed to consist of gravitationally trappedgas with a temperature of millions of Kelvin. The existence of such hothaloes around massive elliptical galaxies has been established throughtheir X-ray emission. While gas out-flowing from starburst spiralgalaxies has been detected, searches for hot haloes around normal,quiescent spiral galaxies have so far failed, casting doubts on thefundamental physics in galaxy formation models. Here we present thefirst detection of a hot, large-scale gaseous halo surrounding a normal,quiescent spiral galaxy, NGC 5746, alleviating a long-standing problemfor galaxy formation models. In contrast to starburst galaxies, wherethe X-ray halo can be powered by the supernova energy, there is no suchpower source in NGC 5746. The only compelling explanation is that we arehere witnessing a galaxy forming from gradually in-flowing hot anddilute halo gas.

Structure and kinematics of edge-on galaxy discs - V. The dynamics of stellar discs
In earlier papers in this series we determined the intrinsic stellardisc kinematics of 15 intermediate- to late-type edge-on spiral galaxiesusing a dynamical modelling technique. The sample covers a substantialrange in maximum rotation velocity and deprojected face-on surfacebrightness, and contains seven spirals with either a boxy orpeanut-shaped bulge. Here we discuss the structural, kinematical anddynamical properties. From the photometry we find that intrinsicallymore flattened discs tend to have a lower face-on central surfacebrightness and a larger dynamical mass-to-light ratio. This observationsuggests that, at a constant maximum rotational velocity, lower surfacebrightness discs have smaller vertical stellar velocity dispersions.Although the individual uncertainties are large, we find from thedynamical modelling that at least 12 discs are submaximal. The averagedisc contributes 53 +/- 4 per cent to the observed rotation at 2.2 discscalelengths (hR), with a 1σ scatter of 15 per cent.This percentage becomes somewhat lower when effects of finite discflattening and gravity by the dark halo and the gas are taken intoaccount. Since boxy and peanut-shaped bulges are probably associatedwith bars, the result suggests that at 2.2hR the submaximalnature of discs is independent of barredness. The possibility remainsthat very high surface brightness discs are maximal, as these discs areunderrepresented in our sample. We confirm that the radial stellar discvelocity dispersion is related to the galaxy maximum rotationalvelocity. The scatter in this σ versus vmax relationappears to correlate with the disc flattening, face-on central surfacebrightness and dynamical mass-to-light ratio. Low surface brightnessdiscs tend to be more flattened and have smaller stellar velocitydispersions. The findings are consistent with the observed correlationbetween disc flattening and dynamical mass-to-light ratio and cangenerally be reproduced by the simple collapse theory for disc galaxyformation. Finally, the disc mass Tully-Fisher relation is offset fromthe maximum-disc scaled stellar mass Tully-Fisher relation of the UrsaMajor cluster. This offset, -0.3 dex in mass, is naturally explained ifthe discs of the Ursa Major cluster spirals are submaximal.

Structure and kinematics of edge-on galaxy discs - IV. The kinematics of the stellar discs
The stellar disc kinematics in a sample of 15 intermediate- to late-typeedge-on spiral galaxies are studied using a dynamical modellingtechnique. The sample covers a substantial range in maximum rotationvelocity and deprojected face-on surface brightness and contains sevenspirals with either a boxy- or peanut-shaped bulge. Dynamical models ofthe stellar discs are constructed using the disc structure from I-bandsurface photometry and rotation curves observed in the gas. Thedifferences in the line-of-sight stellar kinematics between the modelsand absorption-line spectroscopy are minimized using a least-squaresapproach. The modelling constrains the disc surface density and stellarradial velocity dispersion at a fiducial radius through the freeparameter (σz/σR)-1, whereσz/σR is the ratio of vertical andradial velocity dispersion and M/L is the disc mass-to-light ratio. For13 spirals a transparent model provides a good match to the meanline-of-sight stellar velocity dispersion. Models that include arealistic radiative transfer prescription confirm that the effect ofdust on the observable stellar kinematics is small at the observed slitpositions. We discuss possible sources of systematic error and concludethat most of these are likely to be small. The exception is the neglectof the dark halo gravity, which has probably caused an overestimate ofthe surface density in the case of low surface brightness discs.

Equilibrium Disk-Bulge-Halo Models for the Milky Way and Andromeda Galaxies
We describe a new set of self-consistent, equilibrium disk galaxy modelsthat incorporate an exponential disk, a Hernquist model bulge, an NFWhalo, and a central supermassive black hole. The models are derived fromexplicit distribution functions for each component, and the large numberof parameters permit detailed modeling of actual galaxies. We presenttechniques that use structural and kinematic data such as radial surfacebrightness profiles, rotation curves, and bulge velocity dispersionprofiles to find the best-fit models for the Milky Way and M31. ThroughN-body realizations of these models we explore their stability againstthe formation of bars. The models permit the study of a wide range ofdynamical phenomenon with a high degree of realism.

Structure and kinematics of edge-on galaxy discs - III. The rotation curves in the gas
A technique is introduced for deriving the gaseous rotation curves ofedge-on spiral galaxies. The entire major axis position-velocity (XV)diagram is modelled with a set of rings in a least-squares sense,allowing for the effects of beam-smearing and line-of-sight projection.The feasibility of the technique is demonstrated by applying it to goodquality HI XV diagrams of eight edge-on spirals. For seven additionalspirals the XV diagrams are of insufficient quality, and the HIrotational velocities derived earlier using the envelope-tracing methodare retained. The HI results are augmented with the optical emissionline (HII) kinematics to arrive at estimates of the full rotationcurves. A detailed comparison of the HI and HII kinematics shows thatthe discs in our sample are sufficiently transparent at the heightsabove the plane where we have taken our optical spectra to derive thestellar kinematics. In several of these spirals the HII is mainlyconfined to the spiral arms and does not extend out to the edge of theHI layer, which may have caused the HII velocity profiles to besignificantly narrower than those of HI.

Structure and kinematics of edge-on galaxy discs - II. Observations of the neutral hydrogen
We present Australia Telescope Compact Array and Westerbork SynthesisRadio Telescope HI observations of 15 edge-on spiral galaxies ofintermediate to late morphological type. The global properties and thedistribution and kinematics of the HI gas are analysed and discussed. Wedetermine the rotation curves using the envelope-tracing method. For 10spiral galaxies with a stellar disc truncation we find an average ratioof the HI radius to the truncation radius of the stellar disc of 1.1 +/-0.2 (1σ).

Structure and kinematics of edge-on galaxy discs - I. Observations of the stellar kinematics
We present deep optical long-slit spectra of 17 edge-on spiral galaxiesof intermediate to late morphological type, mostly parallel to theirmajor axes and in a few cases parallel to the minor axes. Theline-of-sight stellar kinematics are obtained from the stellarabsorption lines using the improved cross-correlation technique. Ingeneral, the stellar kinematics are regular and can be traced well intothe disc-dominated region. The mean stellar velocity curves are far fromsolid-body, indicating that the effect of dust extinction is not large.The line-of-sight stellar disc velocity dispersion correlates with thegalaxy maximum rotational velocity, but detailed modelling is necessaryto establish whether this represents a physical relation. In fourspirals with a boxy- or peanut-shaped bulge we are able to detectasymmetric velocity distributions, having a common signature withprojected radius in the mean line-of-sight velocity and theh3 and h4 curves. In two cases this kinematicasymmetry probably represents the `figure-of-eight' pattern synonymouswith a barred potential. We emphasize, however, that the signatures seenin the h3 and h4 curves may also be due to thedisc seen in projection.

Nuclear Stellar Populations in the Infrared Space Observatory Atlas of Bright Spiral Galaxies
To understand the nuclear stellar populations and star formationhistories of the nuclei of spiral galaxies, we have obtained K-bandnuclear spectra for 41 galaxies and H-band spectra for 20 galaxies inthe Infrared Space Observatory's Atlas of Bright Spiral Galaxies. In thevast majority of the subsample (80%), the near-infrared spectra suggestthat evolved red stars completely dominate the nuclear stellarpopulations and that hot young stars are virtually nonexistent. Thesignatures of recent star formation activity are only found in 20% ofthe subsample, even though older red stars still dominate the stellarpopulations in these galaxies. Given the dominance of evolved stars inmost galaxy nuclei and the nature of the emission lines in the galaxieswhere they were detected, we suggest that nuclear star formationproceeds in the form of instantaneous bursts. The stars produced bythese bursts comprise only ~2% of the total nuclear stellar mass inthese galaxies, but we demonstrate how the nuclear stellar populationsof normal spiral galaxies can be built up through a series of thesebursts. The bursts were detected only in Sbc galaxies and later, andboth bars and interactions appeared to be sufficient, but not necessary,triggers for the nuclear star formation activity. The vast majority ofgalaxies with nuclear star formation were classified as H II galaxies.With one exception, LINERs and transition objects were dominated byolder red stars, which suggested that star formation was not responsiblefor generating these galaxies' optical line emission.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

The 2MASS Large Galaxy Atlas
We present the largest galaxies as seen in the near-infrared (1-2μm), imaged with the Two Micron All Sky Survey (2MASS), ranging inangular size from 1' to 1.5d. We highlight the 100 largest in thesample. The galaxies span all Hubble morphological types, includingelliptical galaxies, normal and barred spirals, and dwarf and peculiarclasses. The 2MASS Large Galaxy Atlas provides the necessary sensitivityand angular resolution to examine in detail morphologies in thenear-infrared, which may be radically different from those in theoptical. Internal structures such as spirals, bulges, warps, rings,bars, and star formation regions are resolved by 2MASS. In addition tolarge mosaic images, the atlas includes astrometric, photometric, andshape global measurements for each galaxy. A comparison of fundamentalmeasures (e.g., surface brightness, Hubble type) is carried out for thesample and compared with the Third Reference Catalogue. We furthershowcase NGC 253 and M51 (NGC 5194/5195) to demonstrate the quality anddepth of the data. The atlas represents the first uniform, all-sky,dust-penetrated view of galaxies of every type, as seen in thenear-infrared wavelength window that is most sensitive to the dominantmass component of galaxies. The images and catalogs are availablethrough the NASA/IPAC Extragalactic Database and Infrared ScienceArchive and are part of the 2MASS Extended Source Catalog.

An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge-on spiral galaxies. I. How common are gaseous halos among non-starburst galaxies?
In a series of two papers we present results of a new Hα imagingsurvey, aiming at the detection of extraplanar diffuse ionized gas inhalos of late-type spiral galaxies. We have investigated a sample of 74nearby edge-on spirals, covering the northern and southern hemisphere.In 30 galaxies we detected extraplanar diffuse emission at meandistances of |z| ~ 1-2 kpc. Individual filaments can be traced out to|z|<=6 kpc in a few cases. We find a good correlation between the FIRflux ratio (S60/S100) and the SFR per unit area(LFIR/D225), based on thedetections/non-detections. This is actually valid for starburst, normaland for quiescent galaxies. A minimal SFR per unit area for the lowestS60/S100 values, at which extended emission hasbeen detected, was derived, which amounts to dotEA25thres = (3.2+/-0.5)*E40ergs-1 kpc-2. There are galaxies where extraplanaremission was detected at smaller values ofLFIR/D225, however, only in combinationwith a significantly enhanced dust temperature. The results corroboratethe general view that the gaseous halos are a direct consequence of SFactivity in the underlying galactic disk.Based on observations collected at the European Southern Observatory,Chile (ESO No. 63.N-0070, ESO No. 64.N-0034, ESO No. 65.N.-0002).

A catalog of warps in spiral and lenticular galaxies in the Southern hemisphere
A catalog of optical warps of galaxies is presented. This can beconsidered complementary to that reported by Sánchez-Saavedra etal. (\cite{sanchez-saavedra}), with 42 galaxies in the northernhemisphere, and to that by Reshetnikov & Combes(\cite{reshetnikov99}), with 60 optical warps. The limits of the presentcatalog are: logr 25 > 0.60, B_t< 14.5, delta (2000) <0deg, -2.5 < t < 7. Therefore, lenticular galaxies havealso been considered. This catalog lists 150 warped galaxies out of asample of 276 edge-on galaxies and covers the whole southern hemisphere,except the Avoidance Zone. It is therefore very suitable for statisticalstudies of warps. It also provides a source guide for detailedparticular observations. We confirm the large frequency of warpedspirals: nearly all galaxies are warped. The frequency and warp angle donot present important differences for the different types of spirals.However, no lenticular warped galaxy has been found within the specifiedlimits. This finding constitutes an important restriction fortheoretical models.

The Halo-to-Disk Mass Ratio in Late-Type Galaxies
Not Available

Flat Galaxies of the RFGC Catalog Detected in the HIPASS Survey
Data from the H I Parkes All-Sky Survey (HIPASS) of the southern sky inthe neutral hydrogen line are used to determine the radial velocitiesand widths of the H I line for flat spiral galaxies of the RevisedFlat-Galaxy Catalog (RFGC) seen edge-on. The sample of 103 flat galaxiesdetected in HIPASS is characterized by a median radial velocity of +2037km/sec and a median width of the H I line at the level of 50% of maximumof 242 km/sec. For RFGC galaxies the 50% detection level in HIPASScorresponds to an apparent magnitude B t = 14 m .5 or an angulardiameter a = 2.9. The relative number of detected galaxies increasesfrom 2% for the morphological types Sbc and Sc to 41% for the type Sm.The median value of the ratio of hydrogen mass to total mass for RFGCgalaxies is 0.079. With allowance for the average internal extinctionfor edge-on galaxies, B t m .75, the median ratio of hydrogen mass toluminosity, M H I/L B = 0.74 M ȯ/L ȯ, is typical for late-typespirals. Because of its small depth, HIPASS reveals only a few RFGCgalaxies with previously unknown velocities and line widths.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

An Infrared Space Observatory Atlas of Bright Spiral Galaxies
In this first paper in a series we present an atlas of infrared imagesand photometry from 1.2 to 180 μm for a sample of bright spiralgalaxies. The atlas galaxies are an optically selected,magnitude-limited sample of 77 spiral and S0 galaxies chosen from theRevised Shapley-Ames Catalog (RSA). The sample is a representativesample of spiral galaxies and includes Seyfert galaxies, LINERs,interacting galaxies, and peculiar galaxies. Using the Infrared SpaceObservatory (ISO), we have obtained 12 μm images and photometry at60, 100, and 180 μm for the galaxies. In addition to its imagingcapabilities, ISO provides substantially better angular resolution thanis available in the IRAS survey, and this permits discrimination betweeninfrared activity in the central regions and global infrared emission inthe disks of these galaxies. These ISO data have been supplemented withJHK imaging using ground-based telescopes. The atlas includes 2 and 12μm images. Following an analysis of the properties of the galaxies,we have compared the mid-infrared and far-infrared ISO photometry withIRAS photometry. The systematic differences we find between the IRASFaint Source Catalog and ISO measurements are directly related to thespatial extent of the ISO fluxes, and we discuss the reliability of IRASFaint Source Catalog total flux densities and flux ratios for nearbygalaxies. In our analysis of the 12 μm morphological features we findthat most but not all galaxies have bright nuclear emission. We find 12μm structures such as rings, spiral arm fragments, knotted spiralarms, and bright sources in the disks that are sometimes brighter thanthe nuclei at mid-infrared wavelengths. These features, which arepresumably associated with extranuclear star formation, are common inthe disks of Sb and later galaxies but are relatively unimportant inS0-Sab galaxies. Based on observations with the Infrared SpaceObservatory (ISO), an ESA project with instruments funded by ESA MemberStates (especially the PI countries: France, Germany, Netherlands, andUnited Kingdom) and with the participation of ISAS and NASA.

Warps and correlations with intrinsic parameters of galaxies in the visible and radio
From a comparison of the different parameters of warped galaxies in theradio, and especially in the visible, we find that: a) No large galaxy(large mass or radius) has been found to have high amplitude in thewarp, and there is no correlation of size/mass with the degree ofasymmetry of the warp. b) The disc density and the ratio of dark toluminous mass show an opposing trend: smaller values give moreasymmetric warps in the inner radii (optical warps) but show nocorrelation with the amplitude of the warp; however, in the externalradii is there no correlation with asymmetry. c) A third anticorrelationappears in a comparison of the amplitude and degree of asymmetry in thewarped galaxies. Hence, it seems that very massive dark matter haloeshave nothing to do with the formation of warps but only with the degreeof symmetry in the inner radii, and are unrelated to the warp shape forthe outermost radii. Denser discs show the same dependence.

Properties of tidally-triggered vertical disk perturbations
We present a detailed analysis of the properties of warps andtidally-triggered perturbations perpendicular to the plane of 47interacting/merging edge-on spiral galaxies. The derived parameters arecompared with those obtained for a sample of 61 non-interacting edge-onspirals. The entire optical (R-band) sample used for this study waspresented in two previous papers. We find that the scale height of disksin the interacting/merging sample is characterized by perturbations onboth large ( =~ disk cut-off radius) and short ( =~ z0)scales, with amplitudes of the order of 280 pc and 130 pc on average,respectively. The size of these large (short) -scale instabilitiescorresponds to 14% (6%) of the mean disk scale height. This is a factorof 2 (1.5) larger than the value found for non-interacting galaxies. Ahallmark of nearly all tidally distorted disks is a scale height thatincreases systematically with radial distance. The frequent occurrenceand the significantly larger size of these gradients indicate that diskasymmetries on large scales are a common and persistent phenomenon,while local disturbances and bending instabilities decline on shortertimescales. Nearly all (93%) of the interacting/merging and 45% of thenon-interacting galaxies studied are noticeably warped. Warps ofinteracting/merging galaxies are ~ 2.5 times larger on average thanthose observed in the non-interacting sample, with sizes of the order of340 pc and 140 pc, respectively. This indicates that tidal distortionsdo considerably contribute to the formation and size of warps. However,they cannot entirely explain the frequent occurrence of warped disks.Based on observations obtained at the European Southern Observatory(ESO, La Silla, Chile), Calar Alto Observatory operated by the MPIA(DSAZ, Spain), Lowell Observatory (Flagstaff,AZ, USA), and Hoher ListObservatory (Germany).

A list of peculiar velocities of RFGC galaxies
A list of radial velocities, HI line widths and peculiar velocities of1327 galaxies from the RFGC catalogue has been compiled using actualobservations and literature data. The list can be used for studying bulkmotions of galaxies, construction of the field of peculiar velocitiesand other tasks.

A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch, Globular Cluster Luminosity Function, Planetary Nebula Luminosity Function, and Surface Brightness Fluctuation Data Useful for Distance Determinations
We present a compilation of Cepheid distance moduli and data for foursecondary distance indicators that employ stars in the old stellarpopulations: the planetary nebula luminosity function (PNLF), theglobular cluster luminosity function (GCLF), the tip of the red giantbranch (TRGB), and the surface brightness fluctuation (SBF) method. Thedatabase includes all data published as of 1999 July 15. The mainstrength of this compilation resides in the fact that all data are on aconsistent and homogeneous system: all Cepheid distances are derivedusing the same calibration of the period-luminosity relation, thetreatment of errors is consistent for all indicators, and measurementsthat are not considered reliable are excluded. As such, the database isideal for comparing any of the distance indicators considered, or forderiving a Cepheid calibration to any secondary distance indicator, suchas the Tully-Fisher relation, the Type Ia supernovae, or the fundamentalplane for elliptical galaxies. This task has already been undertaken byFerrarese et al., Sakai et al., Kelson et al., and Gibson et al.Specifically, the database includes (1) Cepheid distances, extinctions,and metallicities; (2) reddened apparent λ5007 Å magnitudesof the PNLF cutoff; (3) reddened apparent magnitudes and colors of theturnover of the GCLF (in both the V and B bands); (4) reddened apparentmagnitudes of the TRGB (in the I band) and V-I colors at 0.5 mag fainterthan the TRGB; and (5) reddened apparent surface brightness fluctuationmagnitudes measured in Kron-Cousin I, K', andKshort, and using the F814W filter with the Hubble SpaceTelescope (HST) WFPC2. In addition, for every galaxy in the database wegive reddening estimates from IRAS/DIRBE as well as H I maps, J2000coordinates, Hubble and T-type morphological classification, apparenttotal magnitude in B, and systemic velocity.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant
A Cepheid-based calibration is derived for four distance indicators thatutilize stars in old stellar populations: the tip of the red giantbranch (TRGB), the planetary nebula luminosity function (PNLF), theglobular cluster luminosity function (GCLF), and the surface brightnessfluctuation method (SBF). The calibration is largely based on theCepheid distances to 18 spiral galaxies within cz=1500 km s-1obtained as part of the Hubble Space Telescope (HST) Key Project on theExtragalactic Distance Scale, but relies also on Cepheid distances fromseparate HST and ground-based efforts. The newly derived calibration ofthe SBF method is applied to obtain distances to four Abell clusters inthe velocity range 3800-5000 km s-1. Combined with clustervelocities corrected for a cosmological flow model, these distancesimply a value of the Hubble constant of H0=69+/-4(random)+/-6 (systematic) km s-1 Mpc-1. Thisresult assumes that the Cepheid PL relation is independent of themetallicity of the variable stars; adopting a metallicity correction asin Kennicutt et al. would produce a 5%+/-3% decrease in H0.Finally, the newly derived calibration allows us to investigatesystematics in the Cepheid, PNLF, SBF, GCLF, and TRGB distance scales.

Box- and peanut-shaped bulges. I. Statistics
We present a classification for bulges of a complete sample of ~ 1350edge-on disk galaxies derived from the RC3 (Third Reference Catalogue ofBright Galaxies, de Vaucouleurs et al. \cite{rc3}). A visualclassification of the bulges using the Digitized Sky Survey (DSS) inthree types of b/p bulges or as an elliptical type is presented andsupported by CCD images. NIR observations reveal that dust extinctiondoes almost not influence the shape of bulges. There is no substantialdifference between the shape of bulges in the optical and in the NIR.Our analysis reveals that 45% of all bulges are box- and peanut-shaped(b/p). The frequency of b/p bulges for all morphological types from S0to Sd is > 40%. In particular, this is for the first time that such alarge frequency of b/p bulges is reported for galaxies as late as Sd.The fraction of the observed b/p bulges is large enough to explain theb/p bulges by bars. Partly based on observations collected at ESO/LaSilla (Chile), DSAZ/Calar Alto (Spain), and Lowell Observatory/Flagstaff(AZ/U.S.A.). Tables 6 and 7 are only available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The influence of interactions and minor mergers on the structure of galactic disks I. Observations and disk models
This paper is the first part in our series on the influence of tidalinteractions and minor mergers on the radial and vertical disk structureof spiral galaxies. We report on the sample selection, our observations,and data reduction. Surface photometry of the optical and near infrareddata of a sample of 110 highly-inclined/edge-on disk galaxies arepresented. This sample consists of two subsamples of 61 non-interactinggalaxies (control sample) and of 49 interacting galaxies/minor mergingcandidates. Additionally, 41 of these galaxies were observed in the nearinfrared. We show that the distribution of morphological types of bothsubsamples is almost indistinguishable, covering the range between 0<= T <= 9. An improved, 3-dimensional disk modelling- and fittingprocedure is described in order to analyze and to compare the diskstructure of our sample galaxies by using characteristic parameters. Wefind that the vertical brightness profiles of galactic disks respondvery sensitive even to small deviations from the perfect edge-onorientation. Hence, projection effects of slightly inclined disks maycause substantial changes in the value of the disk scale height and musttherefore be considered in the subsequent study. Based on observationsobtained at the European Southern Observatory (ESO, La Silla, Chile),Calar Alto Observatory operated by the MPIA (DSAZ, Spain), LowellObservatory (Flagstaff/AZ, USA), and Hoher List Observatory (Germany).

Box- and peanut-shaped bulges. II. NIR observations
We have observed 60 edge-on galaxies in the NIR in order to study thestellar distribution in galaxies with box/peanut-shaped bulges. The muchsmaller amount of dust extinction at these wavelengths allows us toidentify in almost all target galaxies with box/peanut-shaped bulges anadditional thin, central component in cuts parallel to the major axis.This structure can be identified with a bar. The length of thisstructure scaled by the length of the bulge correlates with themorphologically classified shape of the bulge. This newly establishedcorrelation is therefore mainly interpreted as the projection of the barat different aspect angles. Galaxies with peanut bulges have a bar seennearly edge-on and the ratio of bar length to thickness, 14 +/- 4, canbe directly measured for the first time. In addition, the correlation ofthe boxiness of bulges with the bar strength indicates that the barcharacteristic could partly explain differences in the bulge shape.Furthermore, a new size relation between the box/peanut structure andthe central bulge is found. Our observations are discussed in comparisonto a N-body simulation for barred galaxies (Pfenniger & Friedli\cite{pfe}). We conclude that the inner region of barred disk galaxiesare build up by three distinct components: the spheroidal bulge, a thinbar, and a b/p structure most likely representing the thick part of thebar. Based on observations collected at ESO/La Silla (61.A-0143),DSAZ/Calar Alto, and TIRGO/Gornergrat.}

The influence of interactions and minor mergers on the structure of galactic disks. II. Results and interpretations
We present the second part of a detailed statistical study focussed onthe effects of tidal interactions and minor mergers on the radial andvertical disk structure of spiral galaxies. In the first part wereported on the sample selection, observations, and applied disk models.In this paper the results are presented, based on disk parametersderived from a sample of 110 highly-inclined/edge-on galaxies. Thissample consists of two subsamples of 49 interacting/merging and 61non-interacting galaxies. Additionally, 41 of these galaxies wereobserved in the NIR. We find significant changes of the disk structurein vertical direction, resulting in ~ 1.5 times larger scale heights andthus vertical velocity dispersions. The radial disk structure,characterized by the cut-off radius and the scale length, shows nostatistically significant changes. Thus, the ratio of radial to verticalscale parameters, h/z0, is ~ 1.7 times smaller for the sampleof interacting/merging galaxies. The total lack of typical flat diskratios h/z0 > 7 in the latter sample implies that verticaldisk heating is most efficient for (extremely) thin disks. Statisticallynearly all galactic disks in the sample (93%) possess non-isothermalvertical luminosity profiles like the sech (60%) and exp (33%)distribution, independent of the sample and passband investigated. Thisindicates that, in spite of tidal perturbations and disk thickening, theinitial vertical distribution of disk stars is not destroyed byinteractions or minor mergers. Based on observations obtained at theEuropean Southern Observatory (ESO, La Silla, Chile), Calar AltoObservatory operated by the MPIA (DSAZ, Spain), Lowell Observatory(Flagstaff/AZ, USA), and Hoher List Observatory (Germany).

Extraplanar diffuse ionized gas in a small sample of nearby edge-on galaxies
We present narrowband Hα imaging data of a small survey of nearbyedge-on spiral galaxies, aiming at the detection of `extraplanar'diffuse ionized gas (DIG). A few of our studied edge-on spirals showsigns of disk-halo interaction (DHI), where extended line emission farabove the galactic plane of these galaxies is detected. In some cases anextraplanar diffuse ionized gas (eDIG) layer is discovered, e.g.,NGC4634, NGC 3044, while othergalaxies show only filamentary features reaching into the halo (e.g.,IC 2531) and some galaxies show no sign of eDIG atall. The extraplanar distances of the DIG layer in our narrowbandHα images reach values of z<= 2 kpc above the galactic plane.The derived star formation rates (SFRs) from the Hα flux of thestudied galaxies range from 0.05-0.7 Msun yr-1,neglecting a correction for internal absorption. The variation of theSFR values among our sample galaxies reflects the diversity of starformation within this sample. A diagnostic diagram is introduced, whichallows to predict the existence of gas halos in `quiescent' galaxiesbased on the ratio S60 /S100 versusLFIR / D225 in this diagram. We comparethe positions of the non-starburst galaxies with starburst galaxies,since these galaxies populate distinct positions in these diagrams.Based on observations collected at the European Southern Observatory, LaSilla, Chile

The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems
Prompted by a new catalogue of M31 globular clusters, we have collectedtogether individual metallicity values for globular clusters in theLocal Group. Although we briefly describe the globular cluster systemsof the individual Local Group galaxies, the main thrust of our paper isto examine the collective properties. In this way we are simulating thedissipationless merger of the Local Group, into presumably an ellipticalgalaxy. Such a merger is dominated by the Milky Way and M31, whichappear to be fairly typical examples of globular cluster systems ofspiral galaxies. The Local Group `Elliptical' has about 700 +/- 125globular clusters, with a luminosity function resembling the `universal'one. The metallicity distribution has peaks at [Fe/H] ~ -1.55 and -0.64with a metal-poor to metal-rich ratio of 2.5:1. The specific frequencyof the Local Group Elliptical is initially about 1 but rises to about 3,when the young stellar populations fade and the galaxy resembles an oldelliptical. The metallicity distribution and stellar populationcorrected specific frequency are similar to that of some known earlytype galaxies. Based on our results, we briefly speculate on the originof globular cluster systems in galaxies.

The Revised Flat Galaxy Catalogue.
We present a new improved and completed version of the Flat GalaxyCatalogue (FGC) named the Revised Flat Galaxy Catalogue (RFGC)containing 4236 thin edge-on spiral galaxies and covering the whole sky.The Catalogue is intended to study large-scale cosmic streamings as wellas other problems of observational cosmology. The dipole moment ofdistribution of the RFGC galaxies (l = 273 degr; b =+19 degr) lieswithin statistical errors (+/-10 degr) in the direction of the LocalGroup motion towards the Microwave Background Radiation (MBR).

Properties of the Stellar Velocity Ellipsoid and Stability in Disks of Spiral Galaxies
Disks of spiral galaxies are characterized by effectively exponentialbrightness and presumably density distributions in both the radial andvertical directions. It is to be expected that the ratio between thescalelength and -height bears a relation to the axis ratio of thestellar velocity ellipsiod. Hydrostatic equilibrium connects thevertical velocity dispersion to the scaleheight. In the radial directionthe velocity dispersion relates to the scalelength through conditions oflocal stability. Preliminary applications are presented.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:13h29m48.80s
Aparent dimensions:8.128′ × 1.175′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 5170

→ Request more catalogs and designations from VizieR