Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 488



Upload your image

DSS Images   Other Images

Related articles

The hot, warm and cold gas in Arp 227 - an evolving poor group
Arp 227 represents a prototypical example of an interacting mixed pairof galaxies located in a low-density environment. We investigate the gasproperties of the pair in the X-ray, Hα, HI and CO bands. We alsodetect two additional members of the group in HI which indicates thatthe pair constitutes the dominant members of a loose group.The HI distribution shows a tail of gas that connects the spiral member,NGC 470, to the lenticular, NGC 474, showing that the two main membersare currently undergoing interaction. The Hα emission reveals thepresence of secondary components at the centre of NGC 470, superposed onthe main component tracing the rotation of the galaxy. This latter mapsa nearly unperturbed velocity field. The dominant, nearly unperturbedtrend of the kinematics is confirmed by CO observations, althoughrestricted to the centre of the galaxy. The X-ray luminosity of NGC 470is comparable with that of a `normal' spiral galaxy. NGC 474 on theother hand is very gas-poor and has not been detected in Hα. ItsX-ray luminosity is consistent with the low end of the expected emissionfrom discrete sources.Arp 227 as a loose group shows several signatures of galaxy-galaxyinteraction. Our observations suggest the presence of signatures ofinteraction in the overall kinematics of the spiral companion. Theongoing interaction is clearly visible only in the outer HI halo of NGC470. While the large shell system of NGC 474 could be associated with anaccretion event, the secondary components in the Hα profile in thecentre of NGC 470 could be due to the interaction with the companion.The low X-ray luminosity of NGC 470 seems to be a characteristic ofdynamically young systems. All the above evidence suggest that Arp 227is an evolving group in the early phase of its evolution and that itsdrivers are the accretion of faint galaxies and the ongoing large-scaleinteraction between NGC 470 and 474.

Late-type galaxies observed with SAURON: two-dimensional stellar and emission-line kinematics of 18 spirals
We present the stellar and gas kinematics of a sample of 18 nearbylate-type spiral galaxies (Hubble types ranging from Sb to Sd), observedwith the integral-field spectrograph SAURON at the 4.2-m WilliamHerschel Telescope. SAURON covers the spectral range 4800-5380Å,allowing us to measure the Hβ, Fe, Mgb absorption features and theemission in the Hβ line and the [OIII]λλ4959,5007Å and [NI]λλ5198, 5200Å doublets over a 33× 41-arcsec2 field of view. The maps cover the nuclearregion of these late-type galaxies and in all cases include the entirebulge. In many cases the stellar kinematics suggests the presence of acold inner region, as visible from a central drop in the stellarvelocity dispersion. The ionized gas is almost ubiquitous and behaves ina complicated fashion: the gas velocity fields often display morefeatures than the stellar ones, including wiggles in the zero-velocitylines, irregular distributions, ring-like structures. The line ratio[OIII]/Hβ often takes on low values over most of the field,probably indicating a wide-spread star formation.

Dark and Baryonic Matter in Bright Spiral Galaxies. I. Near-Infrared and Optical Broadband Surface Photometry of 30 Galaxies
We present photometrically calibrated images and surface photometry inthe B, V, R, J, H, and K bands of 25, and in the g, r, and K bands offive nearby bright (B0T<12.5 mag) spiralgalaxies with inclinations of 30°-65° spanning the Hubblesequence from Sa to Scd. Data are from The Ohio State University BrightSpiral Galaxy Survey, the Two Micron All Sky Survey, and the SloanDigital Sky Survey Second Data Release. Radial surface brightnessprofiles are extracted, and integrated magnitudes are measured from theprofiles. Axis ratios, position angles, and scale lengths are measuredfrom the near-infrared images. A one-dimensional bulge/diskdecomposition is performed on the near-infrared images of galaxies witha nonnegligible bulge component, and an exponential disk is fit to theradial surface brightness profiles of the remaining galaxies.Based in part on observations obtained at the Cerro TololoInter-American Observatory, operated by the Association of Universitiesfor Research in Astronomy, Inc., under a cooperative agreement with theNational Science Foundation.

Dark and Baryonic Matter in Bright Spiral Galaxies. II. Radial Distributions for 34 Galaxies
We decompose the rotation curves of 34 bright spiral galaxies intobaryonic and dark matter components. Stellar mass profiles are createdby applying color-M/L relations to near-infrared and optical photometry.We find that the radial profile of the baryonic-to-dark-matter ratio isself-similar for all galaxies, when scaled to the radius at which thecontribution of the baryonic mass to the rotation curve equals that ofthe dark matter (RX). We argue that this is due to thequasi-exponential nature of disks and rotation curves that are nearlyflat after an initial rise. The radius RX is found tocorrelate most strongly with baryonic rotation speed, such that galaxieswith RX measurements that lie further out in their disksrotate faster. This quantity also correlates very strongly with stellarmass, Hubble type, and observed rotation speed; B-band central surfacebrightness is less related to RX than these other galaxyproperties. Most of the galaxies in our sample appear to be close tomaximal disk. For these galaxies, we find that maximum observed rotationspeeds are tightly correlated with maximum rotation speeds predictedfrom the baryon distributions, such that one can create a Tully-Fisherrelation based on surface photometry and redshifts alone. Finally, wecompare our data to the NFW parameterization for dark matter profileswith and without including adiabatic contraction as it is most commonlyimplemented. Fits are generally poor, and all but two galaxies arebetter fit if adiabatic contraction is not performed. In order to havebetter fits, and especially to accommodate adiabatic contraction,baryons would need to contribute very little to the total mass in theinner parts of galaxies, seemingly in contrast with other observationalconstraints.

Star Formation in Satellite Galaxies
We present narrowband observations of the Hα emission in a sampleof 31 satellites orbiting isolated giant spiral galaxies. The samplestudied spans the range -19 mag

The Hα Galaxy Survey . III. Constraints on supernova progenitors from spatial correlations with Hα emission
Aims.We attempt to constrain progenitors of the different types ofsupernovae from their spatial distributions relative to star formationregions in their host galaxies, as traced by Hα + [Nii] lineemission. Methods: .We analyse 63 supernovae which have occurredwithin galaxies from our Hα survey of the local Universe. Threestatistical tests are used, based on pixel statistics, Hα radialgrowth curves, and total galaxy emission-line fluxes. Results:.Many type II supernovae come from regions of low or zero emission lineflux, and more than would be expected if the latter accurately traceshigh-mass star formation. We interpret this excess as a 40% "Runaway"fraction in the progenitor stars. Supernovae of types Ib and Ic doappear to trace star formation activity, with a much higher fractioncoming from the centres of bright star formation regions than is thecase for the type II supernovae. Type Ia supernovae overall show a weakcorrelation with locations of current star formation, but there isevidence that a significant minority, up to about 40%, may be linked tothe young stellar population. The radial distribution of allcore-collapse supernovae (types Ib, Ic and II) closely follows that ofthe line emission and hence star formation in their host galaxies, apartfrom a central deficiency which is less marked for supernovae of typesIb and Ic than for those of type II. Core-collapse supernova ratesoverall are consistent with being proportional to galaxy totalluminosities and star formation rates; however, within this total thetype Ib and Ic supernovae show a moderate bias towards more luminoushost galaxies, and type II supernovae a slight bias towardslower-luminosity hosts.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

Massive star formation in the central regions of spiral galaxies
Context: . The morphology of massive star formation in the centralregions of galaxies is an important tracer of the dynamical processesthat govern the evolution of disk, bulge, and nuclear activity. Aims. Wepresent optical imaging of the central regions of a sample of 73 spiralgalaxies in the Hα line and in optical broad bands, and deriveinformation on the morphology of massive star formation. Methods. Weobtained images with the William Herschel Telescope, mostly at a spatialresolution of below one second of arc. For most galaxies, no Hαimaging is available in the literature. We outline the observing anddata reduction procedures, list basic properties, and present the I-bandand continuum-subtracted Hα images. We classify the morphology ofthe nuclear and circumnuclear Hα emission and explore trends withhost galaxy parameters. Results. We confirm that late-type galaxies havea patchy circumnuclear appearance in Hα, and that nuclear ringsoccur primarily in spiral types Sa-Sbc. We identify a number ofpreviously unknown nuclear rings, and confirm that nuclear rings arepredominantly hosted by barred galaxies. Conclusions. Other than instimulating nuclear rings, bars do not influence the relative strengthof the nuclear Hα peak, nor the circumnuclear Hα morphology.Even considering that our selection criteria led to an over-abundance ofgalaxies with close massive companions, we do not find any significantinfluence of the presence or absence of a close companion on therelative strength of the nuclear Hα peak, nor on the Hαmorphology around the nucleus.

AM 1934-563: a giant spiral polar-ring galaxy in a triplet
We have observed the emission-line kinematics and photometry of asouthern triplet of galaxies. The triplet contains a giant spiral galaxyAM 1934-563 whose optical structure resembles a polar-ring galaxy: adistorted spiral disk, seen almost edge-on, and a faint large-scale (45kpc in diameter) warped structure, inclined by 60°-70° withrespect to the disk major axis. The triplet shows a relatively smallvelocity dispersion (69 km s-1) and a large crossing time(0.17 in units of the Hubble time). The disk of AM 1934-563 demonstratesoptical colors typical of early-type spirals, a strong radial colorgradient, and almost exponential surface brightness distribution with anexponential scale-length value of 3.1 kpc (R passband). The galaxy showsa maximum rotation velocity of about 200 km s-1 and it liesclose to the Tully-Fisher relation for spiral galaxies. The suspectedpolar ring is faint (μ(B) ≥ 24) and strongly warped. Its totalluminosity comprises 10-15% of the total luminosity of AM 1934-563. Wemodel this system using numerical simulations, and study its possibleformation mechanisms. We find that the most robust model that reproducesthe observed characteristics of the ring and the host galaxy is thetidal transfer of mass from a massive gas-rich donor galaxy to the polarring. The physical properties of the triplet of galaxies are inagreement with this scenario.

Structure and kinematics of edge-on galaxy discs - V. The dynamics of stellar discs
In earlier papers in this series we determined the intrinsic stellardisc kinematics of 15 intermediate- to late-type edge-on spiral galaxiesusing a dynamical modelling technique. The sample covers a substantialrange in maximum rotation velocity and deprojected face-on surfacebrightness, and contains seven spirals with either a boxy orpeanut-shaped bulge. Here we discuss the structural, kinematical anddynamical properties. From the photometry we find that intrinsicallymore flattened discs tend to have a lower face-on central surfacebrightness and a larger dynamical mass-to-light ratio. This observationsuggests that, at a constant maximum rotational velocity, lower surfacebrightness discs have smaller vertical stellar velocity dispersions.Although the individual uncertainties are large, we find from thedynamical modelling that at least 12 discs are submaximal. The averagedisc contributes 53 +/- 4 per cent to the observed rotation at 2.2 discscalelengths (hR), with a 1σ scatter of 15 per cent.This percentage becomes somewhat lower when effects of finite discflattening and gravity by the dark halo and the gas are taken intoaccount. Since boxy and peanut-shaped bulges are probably associatedwith bars, the result suggests that at 2.2hR the submaximalnature of discs is independent of barredness. The possibility remainsthat very high surface brightness discs are maximal, as these discs areunderrepresented in our sample. We confirm that the radial stellar discvelocity dispersion is related to the galaxy maximum rotationalvelocity. The scatter in this σ versus vmax relationappears to correlate with the disc flattening, face-on central surfacebrightness and dynamical mass-to-light ratio. Low surface brightnessdiscs tend to be more flattened and have smaller stellar velocitydispersions. The findings are consistent with the observed correlationbetween disc flattening and dynamical mass-to-light ratio and cangenerally be reproduced by the simple collapse theory for disc galaxyformation. Finally, the disc mass Tully-Fisher relation is offset fromthe maximum-disc scaled stellar mass Tully-Fisher relation of the UrsaMajor cluster. This offset, -0.3 dex in mass, is naturally explained ifthe discs of the Ursa Major cluster spirals are submaximal.

The Vertical Stellar Kinematics in Face-On Barred Galaxies: Estimating the Ages of Bars
In order to perform a detailed study of the stellar kinematics in thevertical axis of bars, we obtained high signal-to-noise spectra alongthe major and minor axes of the bars in a sample of 14 face-on galaxiesand used them to determine the line-of-sight stellar velocitydistribution, parameterized as a Gauss-Hermite series. With these data,we developed a diagnostic tool that allows one to distinguish betweenrecently formed and evolved bars, as well as to estimate their ages,assuming that bars form in vertically thin disks that are recognizableby low values for the vertical velocity dispersion σz.Through N-body realizations of bar unstable disk galaxies we were alsoable to check the timescales involved in the processes that give bars animportant vertical structure. We show that σz inevolved bars is roughly 100 km s-1, which translates to aheight scale of about 1.4 kpc, giving support to scenarios in whichbulges form through disk material. Furthermore, the bars in ournumerical simulations have values for σz generallysmaller than 50 km s-1, even after evolving for 2 Gyr,suggesting that a slow process is responsible for making bars asvertically thick as we observe. We verify theoretically that theSpitzer-Schwarzschild mechanism is quantitatively able to explain theseobservations if we assume that giant molecular clouds are twice asconcentrated along the bar as in the rest of the disk.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

Structure and star formation in disk galaxies. III. Nuclear and circumnuclear Hα emission
From Hα images of a carefully selected sample of 57 relativelylarge, Northern spiral galaxies with low inclination, we study thedistribution of the Hα emission in the circumnuclear and nuclearregions. At a resolution of around 100 parsec, we find that the nuclearHα emission in the sample galaxies is often peaked, andsignificantly more often so among AGN host galaxies. The circumnuclearHα emission, within a radius of two kpc, is often patchy inlate-type, and absent or in the form of a nuclear ring in early-typegalaxies. There is no clear correlation of nuclear or circumnuclearHα morphology with the presence or absence of a bar in the hostgalaxy, except for the nuclear rings which occur in barred hosts. Thepresence or absence of close bright companion galaxies does not affectthe circumnuclear Hα morphology, but their presence does correlatewith a higher fraction of nuclear Hα peaks. Nuclear rings occur inat least 21% (±5%) of spiral galaxies, and occur predominantly ingalaxies also hosting an AGN. Only two of our 12 nuclear rings occur ina galaxy which is neither an AGN nor a starburst host. We confirm thatweaker bars host larger nuclear rings. The implications of these resultson our understanding of the occurrence and morphology of massive starformation, as well as non-stellar activity, in the central regions ofgalaxies are discussed.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

The Properties of Satellite Galaxies in External Systems. II. Photometry and Colors
In this second paper dedicated to the study of satellite galaxies wepresent broadband photometry in the B, V, R, and I filters of 49satellite galaxies orbiting giant isolated spiral galaxies. Firstanalysis of the properties of these objects are presented by means ofcolor-color and color-magnitude diagrams for early- and late-typesatellites. Although we find differences in the slope of the V-I versusMv color magnitude diagram, as a whole, the relations are inagreement with the trends known to date for galaxies of similarmagnitudes in nearby clusters of galaxies. Comparison with the relationsfound for satellites in the Local Group allows us to sample better thebright end of the luminosity function of satellite galaxies and extendsfor brighter objects the validity of the color-magnitude relation foundfor dwarf galaxies in the Local Group. Most of the E/S0 galaxies in oursample show a negative color gradient with values similar to those knownfor early-type galaxies in other environments.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Spiral galaxies observed in the near-infrared K band. I. Data analysis and structural parameters
Deep surface photometry in the K band was obtained for 54 normal spiralgalaxies, with the aim of quantifying the percentage of faint bars andstudying the morphology of spiral arms. The sample was chosen to cover awider range of morphological types while inclination angles anddistances were limited to allow a detailed investigation of the internalstructure of their disks and future observations and studies of the diskkinematics. An additional constraint for a well defined subsample wasthat no bar structure was seen on images in the visual bands. Accuratesky projection parameters were determined from the K maps comparingseveral different methods. The surface brightness distribution wasdecomposed into axisymmetric components while bars and spiral structureswere analyzed using Fourier techniques.Bulges were best represented by a Sérsic r1/n law withan index in the typical range of 1-2. The central surface brightness ofthe exponential disk and bulge-to-disk ratio only showed weakcorrelation with Hubble type. Indications of a central point source werefound in many of the galaxies. An additional central, steep, exponentialdisk improved the fit for more than 80% of the galaxies suggesting thatmany of the bulges are oblate.Bars down to the detection level at a relative amplitude of 3% weredetected in 26 of 30 galaxies in a subsample classified as ordinary SAspirals. This would correspond to only 5% of all spiral galaxies beingnon-barred at this level. In several cases, bars are significantlyoffset compared to the starting points of the main spiral pattern whichindicates that bar and spiral have different pattern speeds. A smallfraction (˜10%) of the sample has complex central structuresconsisting of several sets of bars, arcs or spirals.A majority of the galaxies (˜60%) displays a two-armed, grand-designspiral pattern in their inner parts which often breaks up into multiplearms in their outer regions. Phase shifts between the inner and outerpatterns suggest in some cases that they belong to different spiralmodes. The pitch angles of the main two-armed symmetric spiral patternin the galaxies have a typical range of 5-30 °. The sample shows alack of strong, tight spirals which could indicate that such patternsare damped by non-linear, dynamical effects due to their high radialforce perturbations.Based on observations collected at the European Southern Observatory, LaSilla, Chile; programs: ESO 63.N-0343, 65.N-0287, 66.N-0257.Table 2 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/849Appendix A is only available in electronic form athttp://www.edpsciences.org

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Structure and star formation in disc galaxies - I. Sample selection and near-infrared imaging
We present near-infrared imaging of a sample of 57 relatively large,northern spiral galaxies with low inclination. After describing theselection criteria and some of the basic properties of the sample, wegive a detailed description of the data collection and reductionprocedures. The Ksλ= 2.2-μm images cover most ofthe disc for all galaxies, with a field of view of at least 4.2 arcmin.The spatial resolution is better than 1 arcsec for most images. We fitbulge and exponential disc components to radial profiles of the lightdistribution. We then derive the basic parameters of these components,and the bulge/disc ratio, and explore correlations of these parameterswith several galaxy parameters.

Mechanisms of the Vertical Secular Heating of a Stellar Disk
We investigate the nonlinear growth stages of the bending instability instellar disks with exponential radial density profiles. We found thatthe unstable modes are global (the wavelengths are larger than the diskscale lengths) and that the instability saturation level is much higherthan that following from a linear criterion. The instability saturationtime scales are of the order of one billion years or more. For thisreason, the bending instability can play an important role in thesecular heating of a stellar disk in the z direction. In an extensiveseries of numerical N-body simulations with a high spatial resolution,we were able to scan in detail the space of key parameters (the initialdisk thickness z_0, the Toomre parameter Q, and the ratio of dark halomass to disk mass M_h/M_d). We revealed three distinct mechanisms ofdisk heating in the z direction: bending instability of the entire disk,bending instability of the bar, and heating on vertical inhomogeneitiesin the distribution of stellar matter.

When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945
We present a detailed morphological, photometric, and kinematic analysisof two barred S0 galaxies with large, luminous inner disks inside theirbars. We show that these structures, in addition to being geometricallydisklike, have exponential profiles (scale lengths ~300-500 pc) distinctfrom the central, nonexponential bulges. We also find them to bekinematically disklike. The inner disk in NGC 2787 has a luminosityroughly twice that of the bulge; but in NGC 3945, the inner disk isalmost 10 times more luminous than the bulge, which itself is extremelysmall (half-light radius ~100 pc, in a galaxy with an outer ring ofradius ~14 kpc) and has only ~5% of the total luminosity-a bulge/totalratio much more typical of an Sc galaxy. We estimate that at least 20%of (barred) S0 galaxies may have similar structures, which means thattheir bulge/disk ratios may be significantly overestimated. These innerdisks dominate the central light of their galaxies; they are at least anorder of magnitude larger than typical ``nuclear disks'' found inelliptical and early-type spiral galaxies. Consequently, they mustaffect the dynamics of the bars in which they reside.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

A fast bar in the post-interaction galaxy NGC 1023
We measured the bar pattern speed, Ωp , of the SB0galaxy NGC 1023 using the Tremaine-Weinberg method withstellar-absorption slit spectroscopy. The morphology and kinematics ofthe Hi gas outside NGC 1023 suggest it suffered a tidal interaction,sometime in the past, with one of its dwarf companions. At present,however, the optical disc is relaxed. If the disc had been stabilized bya massive dark matter halo and formed its bar in the interaction, thenthe bar would have to be slow. We found Ωp=5.0+/-1.8kms-1 arcsec-1 , so that the bar endsnear its corotation radius. It is therefore rotating rapidly and musthave a maximum disc.

The Radio Properties of Composite LINER/H II Galaxies
Arcsecond-resolution VLA observations-newly obtained as well aspublished-of 40 nearby galaxies are discussed, completing a study of theradio properties of a magnitude-limited sample of nearby galaxies of thecomposite LINER/H II type. Our results reveal an overall detection rateof at least 25% active galactic nucleus (AGN) candidates among thesecomposite sources. The general properties of these AGN candidates, ascompared to non-AGN composite sources and H II galaxies, are discussed.

The Properties of Satellite Galaxies in External Systems. I. Morphology and Structural Parameters
We present the first results of an ongoing project to study themorphological, kinematical, dynamical, and chemical properties ofsatellite galaxies of external giant spiral galaxies. The sample ofobjects has been selected from the catalog by Zaritsky et al. The paperanalyzes the morphology and structural parameters of a subsample of 60such objects. The satellites span a great variety of morphologies andsurface brightness profiles. About two-thirds of the sample are spiralsand irregulars, the remaining third being early-types. Some casesshowing interaction between pairs of satellites are presented andbriefly discussed.

Nested and Single Bars in Seyfert and Non-Seyfert Galaxies
We analyze the observed properties of nested and single stellar barsystems in disk galaxies. The 112 galaxies in our sample comprise thelargest matched Seyfert versus non-Seyfert galaxy sample of nearbygalaxies with complete near-infrared or optical imaging sensitive tolength scales ranging from tens of parsecs to tens of kiloparsecs. Thepresence of bars is deduced by fitting ellipses to isophotes in HubbleSpace Telescope (HST) H-band images up to 10" radius and in ground-basednear-infrared and optical images outside the H-band images. This is aconservative approach that is likely to result in an underestimate ofthe true bar fraction. We find that a significant fraction of the samplegalaxies, 17%+/-4%, have more than one bar, and that 28%+/-5% of barredgalaxies have nested bars. The bar fractions appear to be stableaccording to reasonable changes in our adopted bar criteria. For thenested bars, we detect a clear division in length between thelarge-scale (primary) bars and small-scale (secondary) bars, in bothabsolute and normalized (to the size of the galaxy) length. We arguethat this bimodal distribution can be understood within the framework ofdisk resonances, specifically the inner Lindblad resonances (ILRs),which are located where the gravitational potential of the innermostgalaxy switches effectively from three-dimensional to two-dimensional.This conclusion is further strengthened by the observed distribution ofthe sizes of nuclear rings which are dynamically associated with theILRs. While primary bar sizes are found to correlate with the hostgalaxy sizes, no such correlation is observed for the secondary bars.Moreover, we find that secondary bars differ morphologically from singlebars. Our matched Seyfert and non-Seyfert samples show a statisticallysignificant excess of bars among the Seyfert galaxies at practically alllength scales. We confirm our previous results that bars are moreabundant in Seyfert hosts than in non-Seyfert galaxies and that Seyfertgalaxies always show a preponderance of ``thick'' bars compared to thebars in non-Seyfert galaxies. Finally, no correlation is observedbetween the presence of a bar and that of companion galaxies, evenrelatively bright ones. Overall, since star formation and dustextinction can be significant even in the H band, the stellar dynamicsof the central kiloparsec cannot always be revealed reliably by the useof near-infrared surface photometry alone.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

The Visibility of Galactic Bars and Spiral Structure at High Redshifts
We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.

Spiral Galaxies with HST/NICMOS. II. Isophotal Fits and Nuclear Cusp Slopes
We present surface brightness profiles for 56 of the 78 spiral galaxiesobserved in the HST/NICMOS2 F160W snapshot survey introduced in Paper Iof this series, as well as surface brightness profiles for 23 objectsout of the 41 that were also observed in the F110W filter. We fit thesesurface brightness profiles with the Nuker law of Lauer et al. and usethe smooth analytical descriptions of the data to compute the averagenuclear stellar cusp slopes <γ> in the 0.1"-0.5" radialrange. Our main result is the startling similarity between the nuclearstellar cusp slopes <γ> in the near-infrared compared withthose derived in the visual passband. This similarity has severalimplications: (1) Despite the significant local color variations thatare found in the nuclear regions of spirals and that are documented inPaper I, there are typically little or no optical-NIR global colorgradients, and thus no global stellar population variations, inside~50-100 pc from the nucleus in nearby spirals. (2) The large observedrange of the strength of the nuclear stellar cusps seen in the HSToptical study of spiral galaxies reflects a physical difference betweengalaxies and is not an artifact caused by nuclear dust and/or recentstar formation. (3) The dichotomy between R1/4 bulges, withsteep nuclear stellar cusps <γ>~1, and exponential bulges,with shallow nuclear stellar cusps <γ><0.3, is also notan artifact of the effects of dust or recent star formation. (4) Thepresence of a surrounding massive disk appears to have no effect on therise of the stellar density distribution within the innermost hundredparsecs of the R1/4 spheroids. These results imply abreakdown within the family of exponential bulges of the nuclear versusglobal relationships that have been found for the R1/4spheroids. Such a breakdown is likely to have significant implicationsconcerning the formation of exponential bulges and their connection withthe R1/4 spheroids. Based on observations with the NASA/ESAHubble Space Telescope, obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:01h21m46.90s
Aparent dimensions:5.012′ × 3.631′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 488

→ Request more catalogs and designations from VizieR