Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4742



Upload your image

DSS Images   Other Images

Related articles

Type I Ultraluminous Infrared Galaxies: Transition Stage from ULIRGs to QSOs
We examine whether the ultraluminous infrared galaxies that contain atype 1 Seyfert nucleus (a type I ULIRG) are in the transition stage fromULIRGs to quasi-stellar objects (QSOs). To investigate this issue, wecompare the black hole (BH) mass, the bulge luminosity, and thefar-infrared luminosity among type I ULIRGs, QSOs, and ellipticalgalaxies. As a result, we find the following results: (1) The type IULIRGs have systematically smaller BH masses in spite of the comparablebulge luminosity relative to QSOs and elliptical galaxies. (2) Thefar-infrared luminosity of most type I ULIRGs is larger than theEddington luminosity. We show that the above results do not changesignificantly for three type I ULIRGs for which we can estimate thevisual extinction from the column density. Also, for all eight type IULIRGs, we investigate the effect of uncertainties of BH massmeasurements and our sample bias to make sure that our results are notaltered even if we consider the above two effects. In addition, Anabukirecently revealed that their X-ray properties are similar to those ofthe narrow-line Seyfert 1 galaxies. These would indicate that activegalactic nuclei (AGNs) with a high mass accretion rate exist in type IULIRGs. On the basis of all of these findings, we conclude that it wouldbe a natural interpretation that type I ULIRGs are the early phase of BHgrowth, namely, the missing link between ULIRGs and QSOs. Moreover, bycomparing our results with a theoretical model of a coevolution scenarioof a QSO BH and a galactic bulge, we show clearly that this explanationcould be valid.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles
We present a study of the optical brightness profiles of early typegalaxies, using a number of samples of radio galaxies and opticallyselected elliptical galaxies. For the radio galaxy samples - B2 ofFanaroff-Riley type I and 3C of Fanaroff-Riley type II - we determined anumber of parameters that describe a "Nuker-law" profile, which werecompared with those already known for the optically selected objects. Wefind that radio active galaxies are always of the "core" type (i.e. aninner Nuker law slope γ < 0.3). However, there are core-typegalaxies which harbor no significant radio source and which areindistinguishable from the radio active galaxies. We do not find anyradio detected galaxy with a power law profile (γ > 0.5). Thisdifference is not due to any effect with absolute magnitude, since in aregion of overlap in magnitude the dichotomy between radio active andradio quiescent galaxies remains. We speculate that core-type objectsrepresent the galaxies that have been, are, or may become, radio activeat some stage in their lives; active and non-active core-type galaxiesare therefore identical in all respects except their eventualradio-activity: on HST scales we do not find any relationship betweenboxiness and radio-activity. There is a fundamental plane, defined bythe parameters of the core (break radius rb and breakbrightness μ_b), which is seen in the strong correlation betweenrb and μ_b. The break radius is also linearly proportionalto the optical Luminosity in the I band. Moreover, for the few galaxieswith an independently measured black hole mass, the break radius turnsout to be tightly correlated with MBH. The black hole masscorrelates even better with the combination of fundamental planeparameters rb and μ_b, which represents the centralvelocity dispersion.

Star formation history in early-type galaxies - I. The line absorption indices diagnostics
To unravel the formation mechanism and the evolutionary history ofelliptical galaxies (EGs) is one of the goals of modern astrophysics. Ina simplified picture of the issue, the question to be answered iswhether they have formed by hierarchical merging of pre-existingsubstructures (maybe disc galaxies) made of stars and gas, with eachmerging event probably accompanied by strong star formation, orconversely, whether they originated from the early aggregation of lumpsof gas turned into stars in the remote past via a burst-like episodeever since followed by quiescence so as to mimic a sort of monolithicprocess. Even if the two alternatives seem to oppose each other,actually they may both contribute to shaping the final properties of EGsas seen today. Are there distinct signatures of the underlying dominantprocess in the observational data? To this aim we have examined the lineabsorption indices on the Lick system of the normal, field EGs of Tragerand the interacting EGs (pair- and shell-objects) of Longhetti et al.The data show that both normal, field and interacting galaxies have thesame scattered but smooth distribution in the Hβ versus [MgFe]plane even if the interacting ones show a more pronounced tail towardhigh Hβ values. This may suggest that a common physical cause is atthe origin of their distribution. There are two straightforwardinterpretations of increasing complexity. (i) EGs span true large rangesof ages and metallicities. A young age is the signature of theaggregation mechanism, each event accompanied by metal enrichment. Thissimple scheme cannot, however, explain other spectro-photometricproperties of EGs and has to be discarded. (ii) The bulk population ofstars is old but subsequent episodes of star formation scatter the EGsin the diagnostic planes. However, this scheme would predict anoutstanding clump at low Hβ values, contrary to what is observed.The model can be cured by supposing that the primary star formationactivity lasted for a significant fraction of the Hubble time (5<=T<= 13 Gyr) accompanied by global metal enrichment. The`younger' galaxies are more metal-rich. The later burst of starformation should be small otherwise too many high-Hβ objects wouldbe observed. Therefore, the distribution of normal, pair- andshell-galaxies in the Hβ versus [MgFe] plane is due to global metalenrichment. Even though the above schemes provide a formal explanation,they seem to be too demanding because of the many ad hoc ingredientsthat have to be introduced. Furthermore, they neglect theobservationally grounded hint that the stellar content of EGs is likelyto be enhanced in α-elements with [α/Fe] ranging from 0.1 to0.4 dex. Here we propose a new scheme, in which the bulk dispersion ofgalaxies in the Hβ versus [MgFe] plane is caused by a differentmean degree of enhancement. In this model, neither the large age rangesnor the universal enrichment law for the old component are required andthe observed distribution along Hβ is naturally recovered.Furthermore, later bursts of stellar activity are a rare event,involving only those galaxies with very high Hβ (roughly >2.5).Finally, simulations of the scatter in broad-band colours of EGs seem toconfirm that the bulk stars have formed in the remote past, and thatmergers and companion star formation in a recent past are not likely,unless the intensity of the secondary activity is very small.

Companions to Isolated Elliptical Galaxies: Revisiting the Bothun-Sullivan Sample
We investigate the number of physical companion galaxies for a sample ofrelatively isolated elliptical galaxies. The NASA/IPAC ExtragalacticDatabase (NED) has been used to reinvestigate the incidence of satellitegalaxies for a sample of 34 elliptical galaxies, first investigated byBothun & Sullivan using a visual inspection of Palomar Sky Surveyprints out to a projected search radius of 75 kpc. We have repeatedtheir original investigation using data cataloged in NED. Nine of theseelliptical galaxies appear to be members of galaxy clusters; theremaining sample of 25 galaxies reveals an average of +1.0+/-0.5apparent companions per galaxy within a projected search radius of 75kpc, in excess of two equal-area comparison regions displaced by 150-300kpc. This is significantly larger than the +0.12+/-0.42companions/galaxy found by Bothun & Sullivan for the identicalsample. Making use of published radial velocities, mostly availablesince the completion of the Bothun-Sullivan study, identifies thephysical companions and gives a somewhat lower estimate of +0.4companions per elliptical galaxy. This is still 3 times larger than theoriginal statistical study, but given the incomplete and heterogeneousnature of the survey redshifts in NED, it still yields a firm lowerlimit on the number (and identity) of physical companions. An expansionof the search radius out to 300 kpc, again restricted to sampling onlythose objects with known redshifts in NED, gives another lower limit of4.5 physical companions per galaxy. (Excluding five elliptical galaxiesin the Fornax Cluster, this average drops to 3.5 companions perelliptical.) These physical companions are individually identified andlisted, and the ensemble-averaged radial density distribution of theseassociated galaxies is presented. For the ensemble, the radial densitydistribution is found to have a falloff consistent withρ~R-0.5 out to approximately 150 kpc. For non-FornaxCluster companions the falloff continues out to the 300 kpc limit of thesurvey. The velocity dispersion of these companions is found to reach amaximum of 350 km s-1 at around 120 kpc, after which theyfall at a rate consistent with Keplerian falloff. This falloff may thenindicate the detection of a cut-off in the mass-density distribution inthe elliptical galaxies' dark matter halo at ~100 kpc.

On the Black Hole Mass-Bulge Mass Relation
We have reexamined the relation between the mass of the central blackholes in nearby galaxies, Mbh, and the stellar mass of thesurrounding spheroid or bulge, Mbulge. For a total of 30galaxies bulge masses were derived through Jeans equation modeling oradopted from dynamical models in the literature. In stellarmass-to-light ratios, the spheroids and bulges span a range of a factorof 8. The bulge masses were related to well-determined black hole massestaken from the literature. With these improved values forMbh, compared to Magorrian et al., and our redetermination ofMbulge, we find that the Mbh-Mbulgerelation becomes very tight. We findMbh~M1.12+/-0.06bulge with an observedscatter of <~0.30 dex, a fraction of which can be attributed tomeasurement errors. The scatter in this relation is therefore comparableto the scatter in the relations of Mbh with σ and thestellar concentration. These results confirm and refine the work ofMarconi & Hunt. For Mbulge~5×1010Msolar the median black hole mass is 0.14%+/-0.04% of thebulge mass.

Revised Rates of Stellar Disruption in Galactic Nuclei
We compute rates of tidal disruption of stars by supermassive blackholes in galactic nuclei, using downwardly revised black hole massesfrom the MBH-σ relation. In galaxies with steep nucleardensity profiles, which dominate the overall event rate, the disruptionfrequency varies inversely with assumed black hole mass. We compute atotal rate for nondwarf galaxies of ~10-5 yr-1Mpc-3, about a factor of 10 higher than in earlier studies.Disruption rates are predicted to be highest in nucleated dwarfgalaxies, assuming that such galaxies contain black holes. Monitoring ofa rich galaxy cluster for a few years could rule out the existence ofintermediate-mass black holes in dwarf galaxies.

Measuring shapes of galaxy images - I. Ellipticity and orientation
We suggest a set of morphological measures that we believe can help inquantifying the shapes of two-dimensional cosmological images such asgalaxies, clusters and superclusters of galaxies. The method employsnon-parametric morphological descriptors known as the Minkowskifunctionals in combination with geometric moments widely used in theimage analysis. For the purpose of visualization of the morphologicalproperties of image contour lines, we introduce three auxiliary ellipsesrepresenting the vector and tensor Minkowski functionals. We study thediscreteness, seeing and noise effects on elliptic contours as well astheir morphological characteristics such as the ellipticity andorientation. In order to reduce the effect of noise, we employ atechnique of contour smoothing. We test the method by studying simulatedelliptic profiles of toy spheroidal galaxies ranging in ellipticity fromE0 to E7. We then apply the method to real galaxies, including eightspheroidals, three disc spirals and one peculiar galaxy, as imaged inthe near-infrared Ks-band (2.2 μm) with the Two Micron AllSky Survey. The method is numerically very efficient and can be used inthe study of hundreds of thousands of images obtained in modern surveys.

Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?
We present new relations between recently defined line-strength indicesin the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocitydispersion (σ0) for a sample of 35 early-type galaxies,showing evidence for significant anti-correlations between CaII tripletindices (CaT* and CaT) and log σ0. These relations areinterpreted in the light of our recent evolutionary synthesis modelpredictions, suggesting the existence of important Ca underabundanceswith respect to Fe and/or an increase of the dwarf to giant stars ratioalong the mass sequence of elliptical galaxies.

Adaptive Optics Imaging and Spectroscopy of Cygnus A. I. Evidence for a Minor Merger
We present Keck II adaptive optics near-infrared imaging andspectroscopic observations of the central regions of the powerful radiogalaxy Cyg A. The 0.05" resolution images clearly show an unresolvednucleus between two spectacular ionization/scattering cones. We reportthe discovery of a relatively bright (K'~19) secondary pointsource 0.4" or 400 pc in projection southwest of the radio nucleus. Theobject is also visible in archival Hubble Space Telescope opticalimages, although it is easily confused with the underlying structure ofthe host. Although the near-infrared colors of this secondary pointsource are roughly consistent with those of an L dwarf, its spectrum andoptical-to-infrared spectral energy distribution (SED) virtually ruleout the possibility that it may be any foreground projected object. Weconclude that the secondary point source is likely to be anextragalactic object associated with Cyg A. We consider severalinterpretations of the nature of this object, including: a young starcluster peering through the dust at the edge of one of the ionizationcones; an older, large globular cluster; a compact cloud of dust orelectrons that is acting as a mirror of the hidden active nucleus; andthe dense core of a gas-stripped satellite galaxy that is merging withthe giant elliptical host. The data presented here are most consistentwith the minor merger scenario. The spectra and SED of the objectsuggest that it may be a densely packed conglomeration of older starsheavily extincted by dust, and its high luminosity and compact natureare consistent with those of a satellite that has been stripped to itstidal radius. Further spectroscopic observations are neverthelessnecessary to confirm this possibility.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedfrom the data archive at the Space Telescope Science Institute. STScI isoperated by the Association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555.

The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity
We present new accurate near-infrared (NIR) spheroid (bulge) structuralparameters obtained by a two-dimensional image analysis of all galaxieswith a direct black hole (BH) mass determination. As expected, NIR bulgeluminosities Lbul and BH masses are tightly correlated, andif we consider only those galaxies with a secure BH mass measurement andan accurate Lbul (27 objects), the spread ofMBH-Lbul is similar toMBH-σe, where σe is theeffective stellar velocity dispersion. We find an intrinsic rms scatterof ~=0.3 dex in logMBH. By combining the bulge effectiveradii Re measured in our analysis with σe,we find a tight linear correlation (rms~=0.25 dex) betweenMBH and the virial bulge mass(~Reσ2e), with~0.002. A partial correlationanalysis shows that MBH depends on both σeand Re and that both variables are necessary to drive thecorrelations between MBH and other bulge properties.

Lensing and the Centers of Distant Early-Type Galaxies
Gravitational lensing provides a unique probe of the inner 10-1000 pc ofdistant galaxies (z~0.2-1). Theoretical studies have predicted that eachstrong lens system should have a faint image near the center of the lensgalaxy, which should, in principle, be visible in radio lenses but hasnever been detected. We study the predicted ``core'' images using modelsderived from the stellar distributions in nearby early-type galaxies. Wefind that realistic lens galaxies produce a remarkably wide range ofcore images, with magnifications spanning some 6 orders of magnitude.More concentrated galaxies produce fainter core images, although notwith any model-independent relation between the galaxy properties andthe core images. Some real galaxies have diffuse cores that should yieldbright core images (magnification μcore>~0.1), but morecommon are galaxies that yield faint core images(μcore<~0.001). Thus, stellar mass distributions aloneare probably concentrated enough to explain the lack of observed coreimages. Observational sensitivity may need to improve by an order ofmagnitude before detections of core images become common. Two-imagelenses should tend to have brighter core images than four-image lenses,so they will be the better targets for finding core images andexploiting these tools for studying the central mass distributions ofdistant galaxies.

Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data
We present central velocity dispersions and Mg2 line indicesfor an all-sky sample of ~1178 elliptical and S0 galaxies, of which 984had no previous measures. This sample contains the largest set ofhomogeneous spectroscopic data for a uniform sample of ellipticalgalaxies in the nearby universe. These galaxies were observed as part ofthe ENEAR project, designed to study the peculiar motions and internalproperties of the local early-type galaxies. Using 523 repeatedobservations of 317 galaxies obtained during different runs, the dataare brought to a common zero point. These multiple observations, takenduring the many runs and different instrumental setups employed for thisproject, are used to derive statistical corrections to the data and arefound to be relatively small, typically <~5% of the velocitydispersion and 0.01 mag in the Mg2 line strength. Typicalerrors are about 8% in velocity dispersion and 0.01 mag inMg2, in good agreement with values published elsewhere.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

The black hole mass of low redshift radiogalaxies
We make use of two empirical relations between the black hole mass andthe global properties (bulge luminosity and stellar velocity dispersion)of nearby elliptical galaxies, to infer the mass of the central blackhole (CM MBH) in low redshift radiogalaxies. Using the mostrecent determinations of black hole masses for inactive early typegalaxies we show that the bulge luminosity and the central velocitydispersion are almost equally correlated (similar scatter) with thecentral black-hole mass. Applying these relations to two large andhomogeneous datasets of radiogalaxies we find that they host black-holeswhose mass ranges from ~ 5*E7 to ~ 6*E9CMMsun (average ~ 8.9). CMMBH is found to be proportional to the mass of the bulge (CMMbulge). The distribution of the ratio CM MBH/CMMbulge has a mean value of 8*E-4 and shows ascatter that is consistent with that expected from the associatederrors. At variance with previous claims no significant correlation isinstead found between CM MBH (or CM Mbulge) andthe radio power at 5 GHz.

Evidence for black holes
As an important test for General Relativity, the existence of a blackhole is always the focus of physicists and astronomers. Particularly inthese years, since a large number of advanced observational facilitiesare put into use and the techniques improved, the search for theevidence for black holes have made great progress, becoming one ofastronomical researching hotspots. In this paper, evidence for stellarblack holes and super-massive black holes in galactic nuclei isreviewed, and the great advances in black hole astrophysics are alsointroduced. Finally, we discuss some great developing projects and theprimary results of pursuing primordial black holes. The suggestions forobservations and the respect of astronomical evidence for black holesare put forward.

Evolution of massive binary black holes
Since many or most galaxies have central massive black holes (BHs),mergers of galaxies can form massive binary black holes (BBHs). In thispaper we study the evolution of massive BBHs in realistic galaxy models,using a generalization of techniques used to study tidal disruptionrates around massive BHs. The evolution of BBHs depends on BH mass ratioand host galaxy type. BBHs with very low mass ratios (say, <~0.001)are hardly ever formed by mergers of galaxies, because the dynamicalfriction time-scale is too long for the smaller BH to sink into thegalactic centre within a Hubble time. BBHs with moderate mass ratios aremost likely to form and survive in spherical or nearly sphericalgalaxies and in high-luminosity or high-dispersion galaxies; they aremost likely to have merged in low-dispersion galaxies (line-of-sightvelocity dispersion <~90kms-1 ) or in highly flattened ortriaxial galaxies. The semimajor axes and orbital periods of survivingBBHs are generally in the range 10-3 -10pc and10-105 yr they are also larger in high-dispersion galaxiesthan in low-dispersion galaxies, larger in nearly spherical galaxiesthan in highly flattened or triaxial galaxies, and larger for BBHs withequal masses than for BBHs with unequal masses. The orbital velocitiesof surviving BBHs are generally in the range 102-104 kms-1 . The methods of detecting survivingBBHs are also discussed. If no evidence of BBHs is found in AGNs, thismay be either because gas plays a major role in BBH orbital decay orbecause nuclear activity switches on soon after a galaxy merger, andends before the smaller BH has had time to spiral to the centre of thegalaxy.

The Slope of the Black Hole Mass versus Velocity Dispersion Correlation
Observations of nearby galaxies reveal a strong correlation between themass of the central dark object MBH and the velocitydispersion σ of the host galaxy, of the formlog(MBH/Msolar)=α+βlog(σ/σ0) however, published estimates of the slope βspan a wide range (3.75-5.3). Merritt & Ferrarese have argued thatlow slopes (<~4) arise because of neglect of random measurementerrors in the dispersions and an incorrect choice for the dispersion ofthe Milky Way Galaxy. We show that these explanations and several othersaccount for at most a small part of the slope range. Instead, the rangeof slopes arises mostly because of systematic differences in thevelocity dispersions used by different groups for the same galaxies. Theorigin of these differences remains unclear, but we suggest that onesignificant component of the difference results from Ferrarese &Merritt's extrapolation of central velocity dispersions tore/8 (re is the effective radius) using anempirical formula. Another component may arise from dispersion-dependentsystematic errors in the measurements. A new determination of the slopeusing 31 galaxies yields β=4.02+/-0.32, α=8.13+/-0.06 forσ0=200 km s-1. The MBH-σrelation has an intrinsic dispersion in logMBH that is nolarger than 0.25-0.3 dex and may be smaller if observational errors havebeen underestimated. In an appendix, we present a simple kinematic modelfor the velocity-dispersion profile of the Galactic bulge.

Nuclear Cusps and Cores in Early-Type Galaxies as Relics of Binary Black Hole Mergers
We present an analysis of the central cusp slopes and core parameters ofearly-type galaxies using a large database of surface brightnessprofiles obtained from Hubble Space Telescope observations. We examinethe relation between the central cusp slopes, core parameters, and blackhole masses in early-type galaxies, in light of two models that attemptto explain the formation of cores and density cusps via the dynamicalinfluence of black holes. Contrary to the expectations fromadiabatic-growth models, we find that the cusp slopes do not steepenwith increasing black hole mass fraction. Moreover, a comparison ofkinematic black hole mass measurements with the masses predicted by theadiabatic models shows that they overpredict the masses by a factor of~3. Simulations involving binary black hole mergers predict that boththe size of the core and the central mass deficit correlate with thefinal black hole mass. These relations are qualitatively supported bythe present data.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Relation between dust and radio luminosity in optically selected early type galaxies
We have surveyed an optical/IR selected sample of nearby E/S0 galaxieswith and without nuclear dust structures with the VLA at 3.6 cm to asensitivity of 100 mu Jy. We can construct a Radio Luminosity Function(RLF) of these galaxies to ~ 1019 W Hz-1 and findthat ~ 50% of these galaxies have AGNs at this level. The space densityof these AGNs equals that of starburst galaxies at this luminosity.Several dust-free galaxies have low luminosity radio cores, and theirRLF is not significantly less than that of the dusty galaxies.

A catalogue and analysis of X-ray luminosities of early-type galaxies
We present a catalogue of X-ray luminosities for 401 early-typegalaxies, of which 136 are based on newly analysed ROSAT PSPC pointedobservations. The remaining luminosities are taken from the literatureand converted to a common energy band, spectral model and distancescale. Using this sample we fit the LX:LB relationfor early-type galaxies and find a best-fit slope for the catalogue of~2.2. We demonstrate the influence of group-dominant galaxies on the fitand present evidence that the relation is not well modelled by a singlepower-law fit. We also derive estimates of the contribution to galaxyX-ray luminosities from discrete-sources and conclude that they provideLdscr/LB~=29.5ergs-1LBsolar-1. Wecompare this result with luminosities from our catalogue. Lastly, weexamine the influence of environment on galaxy X-ray luminosity and onthe form of the LX:LB relation. We conclude thatalthough environment undoubtedly affects the X-ray properties ofindividual galaxies, particularly those in the centres of groups andclusters, it does not change the nature of whole populations.

A synthesis of data from fundamental plane and surface brightness fluctuation surveys
We perform a series of comparisons between distance-independentphotometric and spectroscopic properties used in the surface brightnessfluctuation (SBF) and fundamental plane (FP) methods of early-typegalaxy distance estimation. The data are taken from two recent surveys:the SBF Survey of Galaxy Distances and the Streaming Motions of AbellClusters (SMAC) FP survey. We derive a relation between(V-I)0 colour and Mg2 index using nearly 200galaxies and discuss implications for Galactic extinction estimates andearly-type galaxy stellar populations. We find that the reddenings fromSchlegel et al. for galaxies with E(B-V)>~0.2mag appear to beoverestimated by 5-10 per cent, but we do not find significant evidencefor large-scale dipole errors in the extinction map. In comparison withstellar population models having solar elemental abundance ratios, thegalaxies in our sample are generally too blue at a given Mg2;we ascribe this to the well-known enhancement of the α-elements inluminous early-type galaxies. We confirm a tight relation betweenstellar velocity dispersion σ and the SBF `fluctuation count'parameter N, which is a luminosity-weighted measure of the total numberof stars in a galaxy. The correlation between N and σ is eventighter than that between Mg2 and σ. Finally, we deriveFP photometric parameters for 280 galaxies from the SBF survey data set.Comparisons with external sources allow us to estimate the errors onthese parameters and derive the correction necessary to bring them on tothe SMAC system. The data are used in a forthcoming paper, whichcompares the distances derived from the FP and SBF methods.

The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances
We report data for I-band surface brightness fluctuation (SBF)magnitudes, (V-I) colors, and distance moduli for 300 galaxies. Thesurvey contains E, S0, and early-type spiral galaxies in the proportionsof 49:42:9 and is essentially complete for E galaxies to Hubblevelocities of 2000 km s-1, with a substantial sampling of Egalaxies out to 4000 km s-1. The median error in distancemodulus is 0.22 mag. We also present two new results from the survey.(1) We compare the mean peculiar flow velocity (bulk flow) implied byour distances with predictions of typical cold dark matter transferfunctions as a function of scale, and we find very good agreement withcold, dark matter cosmologies if the transfer function scale parameterΓ and the power spectrum normalization σ8 arerelated by σ8Γ-0.5~2+/-0.5. Deriveddirectly from velocities, this result is independent of the distributionof galaxies or models for biasing. This modest bulk flow contradictsreports of large-scale, large-amplitude flows in the ~200 Mpc diametervolume surrounding our survey volume. (2) We present adistance-independent measure of absolute galaxy luminosity, N and showhow it correlates with galaxy properties such as color and velocitydispersion, demonstrating its utility for measuring galaxy distancesthrough large and unknown extinction. Observations in part from theMichigan-Dartmouth-MIT (MDM) Observatory.

Dusty Nuclear Disks and Filaments in Early-Type Galaxies
We examine the dust properties of a nearby distance-limited sample ofearly-type galaxies using WFPC2 of the Hubble Space Telescope. Dust isdetected in 29 out of 67 galaxies (43%), including 12 with small nucleardusty disks. In a separate sample of 40 galaxies biased for thedetection of dust by virtue of their detection in IRAS 100 μm band,dust is found in ~78% of the galaxies, 15 of which contain dusty disks.In those galaxies with detectable dust, the apparent mass of the dustcorrelates with radio and far-infrared luminosity, becoming moresignificant for systems with filamentary dust. A majority of IRAS andradio detections are also associated with dusty galaxies rather thandustless galaxies. This indicates that thermal emission from clumpy,filamentary dust is the main source of the far-IR radiation inearly-type galaxies. Dust in small disklike morphology tends to be wellaligned with the major axis of the host galaxies, while filamentary dustappears to be more randomly distributed with no preference for alignmentwith any major galactic structure. This suggests that, if the dustydisks and filaments have a common origin, the dust originates externallyand requires time to dynamically relax and settle in the galaxypotential in the form of compact disks. More galaxies with visible dustthan without dust display emission lines, indicative of ionized gas,although such nuclear activity does not show a preference for dusty diskover filamentary dust. There appears to be a weak relationship betweenthe mass of the dusty disks and central velocity dispersion of thegalaxy, suggesting a connection with a similar recently recognizedrelationship between the latter and the black hole mass. Based onobservations with the NASA/ESA Hubble Space Telescope, obtained at theSpace Telescope Science Institute, which is operated by the Associationof Universities for Research in Astronomy, Inc., under NASA contractNAS5-26555.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

A Test for Large-Scale Systematic Errors in Maps of Galactic Reddening
Accurate maps of Galactic reddening are important for a number ofapplications, such as mapping the peculiar velocity field in the nearbyuniverse. Of particular concern are systematic errors which vary slowlyas a function of position on the sky, as these would induce spuriousbulk flow. We have compared the reddenings of Burstein & Heiles (BH)and those of Schlegel, Finkbeiner, & Davis (SFD) to independentestimates of the reddening, for Galactic latitudes |b|>10^deg. Ourprimary source of Galactic reddening estimates comes from comparing thedifference between the observed B-V colors of early-type galaxies, andthe predicted B-V color determined from the B-V-Mg_2 relation. We havefitted a dipole to the residuals in order to look for large-scalesystematic deviations. There is marginal evidence for a dipolar residualin the comparison between the SFD maps and the observed early-typegalaxy reddenings. If this is due to an error in the SFD maps, then itcan be corrected with a small (13%) multiplicative dipole term. Weargue, however, that this difference is more likely to be due to a small(0.01 mag) systematic error in the measured B-V colors of the early-typegalaxies. This interpretation is supported by a smaller, independentdata set (globular cluster and RR Lyrae stars), which yields a resultinconsistent with the early-type galaxy residual dipole. BH reddeningsare found to have no significant systematic residuals, apart from theknown problem in the region 230^deg

X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey
For a magnitude-limited optical sample (B_T <= 13.5 mag) ofearly-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upperlimits in the range from 10^36 to 10^44 erg s^-1. For most of thegalaxies no X-ray data have been available until now. On the basis ofthis sample with its full sky coverage, we find no galaxy with anunusually low flux from discrete emitters. Below log (L_B) ~ 9.2L_⊗ the X-ray emission is compatible with being entirely due todiscrete sources. Above log (L_B) ~ 11.2 L_osolar no galaxy with onlydiscrete emission is found. We further confirm earlier findings that L_xis strongly correlated with L_B. Over the entire data range the slope isfound to be 2.23 (+/- 0.12). We also find a luminosity dependence ofthis correlation. Below log L_x = 40.5 erg s^-1 it is consistent with aslope of 1, as expected from discrete emission. Above this value theslope is close to 2, as expected from gaseous emission. Comparing thedistribution of X-ray luminosities with the models of Ciotti et al.leads to the conclusion that the vast majority of early-type galaxiesare in the wind or outflow phase. Some of the galaxies may have alreadyexperienced the transition to the inflow phase. They show X-rayluminosities in excess of the value predicted by cooling flow modelswith the largest plausible standard supernova rates. A possibleexplanation for these super X-ray-luminous galaxies is suggested by thesmooth transition in the L_x--L_B plane from galaxies to clusters ofgalaxies. Gas connected to the group environment might cause the X-rayoverluminosity.

Colour distributions in E-S0 galaxies . IV. Colour data and dust in E's from Nieto's B, R frames
The B-R colours distributions (with R in Cousins's system) have beenmeasured in 44 E classified galaxies in the Local Supercluster, frompairs of frames collected by Nieto and co-workers in 1989-91. These arenearly all from the CFHT, and of sub-arsec resolution. Great attentionhas been given to the effects of unequal PSF's in the B and R framesupon colour distributions near centre; such effects are illustrated frommodel calculations and from pseudo-colours obtained from pairs of framestaken in the same band but with different seeing conditions. Appropriatecorrections were systematically applied in order to derive centralcolours and inner gradients, although still affected by the limitedresolution of the frames. The radial colour distributions have beenmeasured in more detail than usual, considering separately the nearmajor axis and near minor axis regions of the isophotal contours.Azimuthal colour distributions, in rings limited by selected isophotes,were also obtained. Dust ``patterns", i.e. patches, lanes, arcs, ...,have been detected and mapped from the colour distributions. An ad hocdust pattern importance index (or DPII) in a scale of 0 to 3, has beenintroduced to qualify their size and contrast. We have tried to findevidence of a diffuse dust concentration towards the disk, if one isapparent. Positive results (noted by the dd symbol) have been obtainedfor disky E's, whenever the inclination of their disk to the line ofsight is large enough, and eventually also in the small isolated diskssometimes present in both boxy and disky galaxies. The red central peakoccurring in many E-galaxies might be the signature of a centralconcentration of dust, also in cases where this peak is isolated ratherthan embedded in some extensive colour pattern. The properties of thenear centre colour profiles have been related to a classification ofnuclear photometric profiles into ``flat topped" and ``sharply peaked"(equivalent to ``core-like" and ``power-law" in the terminology ofte[Faber et al. 1997).]{fab97} The published here data include thefollowing: . Short descriptions and codes for the characters of the B-Rdistribution of each object, and comparison to the results of recentsurveys. . A table of the mean B-R at the centre and at two selectedisophotes, a ``core colour gradient" and the usual logarithmic gradient.. Maps of near core B-R isochromes and B isophotes for comparison.Images of the B-R colour distribution are made available in electronicform. Based on observations collected at the Canada-France-HawaiiTelescope and at the Observatoire du Pic du Midi.

Global X-ray emission and central properties of early type galaxies
Hubble Space Telescope observations have revealed that the centralsurface brightness profiles of early type galaxies can be divided intotwo types: ``core" profiles and featureless power law profiles, withoutcores. On the basis of this and previous results, early type galaxieshave been grouped into two families. One consists of coreless galaxies,which are also rapidly rotating, nearly isotropic spheroids, and withdisky isophotes. The other is made of core galaxies, which are slowlyrotating and boxy-distorted. Here I investigate the relationship betweenglobal X-ray emission and shape of the inner surface brightness profile,for a sample of 59 early type galaxies. I find a clear dichotomy also inthe X-ray properties, in the sense that core galaxies span the wholeobserved range of L_X values (roughly two orders of magnitude in L_X ),while power law galaxies are confined to log L_X (ergs-1)<41. Moreover, the relation between L_X and the shapeof the central profile seems to be the strongest among the relations ofL_X with the basic properties characterizing the two families of earlytype galaxies. As an example, L_X is more deeply connected with theshape of the central profile than with the isophotal shape distortion,or the importance of galactic rotation. So, a global property such asL_X , that measures the hot gas content on a galactic scale, turns outto be surprisingly well linked to a nuclear property. Various possiblereasons are explored for the origin of the different L_X behavior ofcore and power law galaxies. While a few explanations can be imaginedfor the large spread in the X-ray luminosities of core galaxies, an openproblem is why power law ones never become very X-ray bright. It islikely that the presence of a central massive black hole, and possiblyalso the environment, play an important role in determining L_X (i.e.,the hot gas content). Therefore the problem of interpreting the X-rayproperties of early type galaxies turns out to be more complex thanthought so far.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:12h51m48.10s
Aparent dimensions:2.239′ × 1.514′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4742

→ Request more catalogs and designations from VizieR