Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4504



Upload your image

DSS Images   Other Images

Related articles

HI content in galaxies in loose groups
Gas deficiency in cluster spirals is well known and ram-pressurestripping is considered the main gas removal mechanism. In some compactgroups too gas deficiency is reported. However, gas deficiency in loosegroups is not yet well established. Lower dispersion of the membervelocities and the lower density of the intragroup medium in small loosegroups favour tidal stripping as the main gas removal process in them.Recent releases of data from the HI Parkes All-Sky Survey (HIPASS) andcatalogues of nearby loose groups with associated diffuse X-ray emissionhave allowed us to test this notion. In this paper, we address thefollowing questions: (i) do galaxies in groups with diffuse X-rayemission statistically have lower gas content compared to the ones ingroups without diffuse X-ray emission? (ii) does HI deficiency vary withthe X-ray luminosity, LX, of the loose group in a systematicway? We find that (i) galaxies in groups with diffuse X-ray emission, onaverage, are HI deficient, and have lost more gas compared to those ingroups without X-ray emission; the latter are found not to havesignificant HI deficiency; (ii) no systematic dependence of the HIdeficiency with LX is found. Ram-pressure-assisted tidalstripping and evaporation by thermal conduction are the two possiblemechanisms to account for this excess gas loss.

Late-type galaxies observed with SAURON: two-dimensional stellar and emission-line kinematics of 18 spirals
We present the stellar and gas kinematics of a sample of 18 nearbylate-type spiral galaxies (Hubble types ranging from Sb to Sd), observedwith the integral-field spectrograph SAURON at the 4.2-m WilliamHerschel Telescope. SAURON covers the spectral range 4800-5380Å,allowing us to measure the Hβ, Fe, Mgb absorption features and theemission in the Hβ line and the [OIII]λλ4959,5007Å and [NI]λλ5198, 5200Å doublets over a 33× 41-arcsec2 field of view. The maps cover the nuclearregion of these late-type galaxies and in all cases include the entirebulge. In many cases the stellar kinematics suggests the presence of acold inner region, as visible from a central drop in the stellarvelocity dispersion. The ionized gas is almost ubiquitous and behaves ina complicated fashion: the gas velocity fields often display morefeatures than the stellar ones, including wiggles in the zero-velocitylines, irregular distributions, ring-like structures. The line ratio[OIII]/Hβ often takes on low values over most of the field,probably indicating a wide-spread star formation.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

The Visibility of Galactic Bars and Spiral Structure at High Redshifts
We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Frequency of Barred Spiral Galaxies in the Near-Infrared
We have determined the fraction of barred galaxies in the H-band for astatistically well-defined sample of 186 spirals drawn from the OhioState University Bright Spiral Galaxy Survey. We find 56% of our sampleto be strongly barred in the H band while another 16% is weakly barred.Only 27% of our sample is unbarred in the near-infrared. The RC3 and theCarnegie Atlas of Galaxies both classify only about 30% of our sample asstrongly barred. Thus strong bars are nearly twice as prevalent in thenear-infrared as in the optical. The frequency of genuine opticallyhidden bars is significant but lower than many claims in the literature:40% of the galaxies in our sample that are classified as unbarred in theRC3 show evidence for a bar in the H band while the Carnegie Atlas liststhis fraction as 66%. Our data reveal no significant trend in barfraction as a function of morphology in either the optical or H band.Optical surveys of high-redshift galaxies may be strongly biased againstfinding bars, as bars are increasingly difficult to detect at bluer restwavelengths. Based partially on observations obtained at the CerroTololo Inter-American Observatory, operated by the Association ofUniversities for Research in Astronomy, Inc., under cooperativeagreement with the National Science Foundation.

Bulge-Disk Decomposition of 659 Spiral and Lenticular Galaxy Brightness Profiles
We present one of the largest homogeneous sets of spiral and lenticulargalaxy brightness profile decompositions completed to date. The 659galaxies in our sample have been fitted with a de Vaucouleurs law forthe bulge component and an inner-truncated exponential for the diskcomponent. Of the 659 galaxies in the sample, 620 were successfullyfitted with the chosen fitting functions. The fits are generally welldefined, with more than 90% having rms deviations from the observedprofile of less than 0.35 mag. We find no correlations of fittingquality, as measured by these rms residuals, with either morphologicaltype or inclination. Similarly, the estimated errors of the fittedcoefficients show no significant trends with type or inclination. Thesedecompositions form a useful basis for the study of the lightdistributions of spiral and lenticular galaxies. The object base issufficiently large that well-defined samples of galaxies can be selectedfrom it.

The Southern Sky Redshift Survey
We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

A comparative study of morphological classifications of APM galaxies
We investigate the consistency of visual morphological classificationsof galaxies by comparing classifications for 831 galaxies from sixindependent observers. The galaxies were classified on laser print copyimages or on computer screen using scans made with the Automated PlateMeasuring (APM) machine. Classifications are compared using the RevisedHubble numerical type index T. We find that individual observers agreewith one another with rms combined dispersions of between 1.3 and 2.3type units, typically about 1.8 units. The dispersions tend to decreaseslightly with increasing angular diameter and, in some cases, withincreasing axial ratio (b/a). The agreement between independentobservers is reasonably good but the scatter is non-negligible. In spiteof the scatter, the Revised Hubble T system can be used to train anautomated galaxy classifier, e.g. an artificial neural network, tohandle the large number of galaxy images that are being compiled in theAPM and other surveys.

Inner two-arm symmetry in spiral galaxies
Most galaxies with spiral density waves, including those with multiplelong arms, have two prominent symmetric arms in their inner regions,inside approximately 0.5 R25. Grand-design galaxies, whichhave two prominent arms throughout their disks, also have brighter,narrower, and more continuous arms inside this radius. Based onmeasurements of these morphological features in 173 galaxies, and on ourprevious studies of optical resonance indicators, we propose thatcorotation is optically visible in most spiral galaxies and is locatednear the radius of the endpoints of the highly symmetric part of thespiral arms, approximately midway out in the disk. This places the outerLindbald resonance at approximately R25, or approximately 4scale lengths, for most spiral galaxies. In barred galaxies, the twoinner symmetric arms end at twice the bar radius, independent of the bartype. If large bars end near corotation, then the ends of the twoprominent arms must be beyond corotation in these systems.

Galaxies with f12 > f25
We have compiled a sample of galaxies whose flux density is higher at 12microns (f12) than at 25 microns (f25). It is argued thatf12 >f25effectively selects quiescent galaxies which are less active ininfrared, radio, and optical bands than other types of normal galaxies.Moreover galaxies withf12 >f25 do not exhibit the well-knownrelations that normal galaxies show between far-infrared parameters, forexample, the negative correlation betweenf12/f25 andf60/f100. Thesegalaxies also show different far-infrared and radio properties. In ouropinion this sample of quiescent galaxies is suitable for use as acontrol sample when properties of more active galaxies are discussed. Itmay also be used in modeling galaxies with active star formation or anactive nucleus.

On the size and formation mechanism of the largest star-forming complexes in spiral and irregular galaxies
The average diameters of the largest star complexes in most of thespiral and irregular galaxies in the Sandage and Bedke Atlas of Galaxieswere measured from the Atlas photographs. The complex diametersDc correlate with galaxy magnitude as Dc = 0.18 -0.14MB, which has about the same slope as the correlation forthe largest H II regions studied by Kennicutt. There is no obviouscorrelation between Dc and either Hubble type or spiral armclass at a given magnitude. The variation of Dc withMB closely matches the expected variation in thecharacteristic length of the gaseous gravitational instabilityconsidering that the rotation curve varies with MB and thatthe stability parameter Q is about 1 in the outer regions of the disk.This match corresponds to an effective velocity dispersion of 6.1 km/sthat is about the same for all spiral and irregular galaxies.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

Effect of Malmquist bias on correlation studies with IRAS data base
The relationships between galaxy properties in the sample of Trinchieriet al. (1989) are reexamined with corrections for Malmquist bias. Thelinear correlations are tested and linear regressions are fit forlog-log plots of L(FIR), L(H-alpha), and L(B) as well as ratios of thesequantities. The linear correlations for Malmquist bias are correctedusing the method of Verter (1988), in which each galaxy observation isweighted by the inverse of its sampling volume. The linear regressionsare corrected for Malmquist bias by a new method invented here in whicheach galaxy observation is weighted by its sampling volume. The resultsof correlation and regressions among the sample are significantlychanged in the anticipated sense that the corrected correlationconfidences are lower and the corrected slopes of the linear regressionsare lower. The elimination of Malmquist bias eliminates the nonlinearrise in luminosity that has caused some authors to hypothesizeadditional components of FIR emission.

General study of group membership. II - Determination of nearby groups
We present a whole sky catalog of nearby groups of galaxies taken fromthe Lyon-Meudon Extragalactic Database. From the 78,000 objects in thedatabase, we extracted a sample of 6392 galaxies, complete up to thelimiting apparent magnitude B0 = 14.0. Moreover, in order to considersolely the galaxies of the local universe, all the selected galaxieshave a known recession velocity smaller than 5500 km/s. Two methods wereused in group construction: a Huchra-Geller (1982) derived percolationmethod and a Tully (1980) derived hierarchical method. Each method gaveus one catalog. These were then compared and synthesized to obtain asingle catalog containing the most reliable groups. There are 485 groupsof a least three members in the final catalog.

Mean galaxy luminosity classifications
To prepare a catalog of weighted means on the classification system ofvan den Bergh, we have combined eight independent lists of luminosityclass estimates, L. Luminosity class values from each set weretransformed to the standard system and weighted according to the errorsderived through a statistical comparison of L differences betweencatalog pairs. Relations were derived for predicting accidental errorsassociated with galaxy diameter and inclination. In addition, we presentformulas for correcting systematic errors associated with diameter andinclination. Finally, we tabulate a high weight subsample of the meanluminosity classes usable as standards. Most values are tabulated in theThird Reference Catalog of Bright Galaxies.

Groups of galaxies within 80 Mpc. II - The catalogue of groups and group members
This paper gives a catalog of the groups and associations obtained bymeans of a revised hierarchical algorithm applied to a sample of 4143galaxies with diameters larger than 100 arcsec and redshifts smallerthan 6000 km/s. The 264 groups of galaxies obtained in this way (andwhich contain at least three sample galaxies) are listed, with the looseassociations surrounding them and the individual members of eachaggregate as well; moreover, the location of every entity among 13regions corresponding roughly to superclusters is specified. Finally,1729 galaxies belong to the groups, and 466 to the associations, i.e.,the total fraction of galaxies within the various aggregates amounts to53 percent.

Gaseous content of galaxies inside groups
The gaseous content of a sample constituted of 84 Sb and 95 Sc galaxiesinside groups has been analyzed. After correcting for the luminosityeffect, no gas deficiency was found for those galaxies in spite of aspan of about 2 orders of magnitude in the galaxy density. Anyintergalactic gas present in the considered groups must have densitiessmaller than 0.0003/cu cm.

Revised supernova rates in Shapley-Ames galaxies
Observations of 855 Shapley Ames galaxies made from November 1, 1980 toOctober 31, 1988, together with improved supernova luminosities, havebeen used to derive the frequency of supernovae of different types, andthe results are presented in tables. From a uniform database of 24supernovae discovered, the following SN rates are found, expressed in SNper century per 10 to the 10th L(B)(solar): SN Ia, 0.3; SN Ib, 0.3; andSN II, 1.0. The present data confirm the relatively high frequency of SNII in late-type galaxies that has been found by many previousinvestigators.

Far-infrared emission and star formation in spiral galaxies
The correlations between the emission in the far-IR, H-alpha, and bluein a sample of normal spiral galaxies are investigated. It is found thatthe luminosities in these three bands are all tightly correlated,although both the strength of the correlations and their functionaldependencies are a function of the galaxies' morphological types. Thebest-fit power laws to these correlations are different for thecomparison of different quantities and deviate significantly fromlinearity in some cases, implying the presence of additional emissionmechanisms not related to the general increase of luminosity withgalactic mass. Clear evidence is found of two independent effects in theincidence of warm far-IR emission in late-type spirals. One is aluminosity effect shown by the presence of excess far-IR relative toH-alpha or optical emission in the more luminous galaxies. The other isa dependence on widespread star-formation activity.

The preponderance of bar and ring features in starburst galaxies and active galactic nuclei
A detailed study of the spiral galaxy NGC 4321 showed that the nuclearstar formation mechanism in this galaxy is very likely related to theorbits perturbation at the Inner Linblad Resonances. In order to testthe hypothesis that the same physical mechanism accounts generally forsuch activity in spiral galaxies, a morphological analysis of a sampleof starburst nuclei and active galactic nuclei (STB, AGN) as well as acontrol sample of normal galaxies has been carried out. It is found thatthe morphological type expected for starbursters like NGC 4321 (SAB(rs)or stronger), occurs at a much higher frequency in the sample of STBsand AGNs than in the control sample. The effect is stronger for STBsthan for AGNs. This provides strong evidences that active formation ofstars in the nuclei of spiral galaxies is linked to the perturbation oforbits at the Inner Linblad Resonances. This interpretation leads to thesuggestion that an effective nuclear starburst phase is an inhibitionmechanism to a more powerful type of nuclear activity like in AGNs.

IRAS observations of an optically selected sample of interacting galaxies
IRAS observations of a large, morphologically selected sample ofstrongly interacting disk-type galaxies have demonstrated thatgalaxy-galaxy collisions can lead to enhanced infrared emission, but notin all cases. Infrared luminosities of the interacting galaxies span alarge range, but are about a factor of 2 higher, on average, than thoseof isolated disk galaxies. The data suggest the existence of a cutoff inblue luminosity, below which no galaxies show markedly enhanced infraredemission. Only the most strongly interacting systems in the sample showextreme values of infrared excess, suggesting that deep,interpenetrating collisions are necessary to drive infrared emission toextreme levels. Comparisons with optical indicators of star formationshow that infrared excess and color temperatures correlate with thelevel of star-formation activity in the interacting galaxies. Allinteracting galaxies in our sample that exhibit an infrared excess andhave higher than normal color temperatures also have optical indicatorsof high levels of star formation. It is not necessary to invokeprocesses other than star formation to account for the enhanced infraredluminosity in this sample of interacting galaxies.

A model of spiral-galaxy evolution. I - Galaxy morphology and star formation rate
The suggestion by Sandage (1986), that the change of star-formation ratewith time is a signature of each Hubble type, is discussed and verifiedon a large set of data. The nonlinear phase-coupling model of Shore etal. (1986), proposed for the evolution of galaxies with disk and halocomponents, is here adopted to follow the star-formation history inspiral galaxies. The effects of both stimulated and spontaneous starformation are included. A simple hypothesis on the connection betweenthe spiral wave amplitude and the cloud phase is sufficient to generatea continuous series of star-formation histories, which may correspond tothe sequence of Hubble types.

A 1.49 GHz atlas of spiral galaxies with B(T) = +12 or less and delta = -45 deg or greater
The VLA has been used in its most compact D- and C/D-configurations tomake low-resolution 1.49 GHz maps of the spiral galaxies north of delta= -45 deg and brighter than B(T) = +12, the completeness limit of theRevised Shapley-Ames Catalog. Most of these maps are confusion-limitedat sigma = 0.1 mJy or greater per beam, and at least 94 percent of thegalaxies were detected with S = 1 mJy or greater. The maps havesufficient sensitivity to low-brightness emission that accurate radio'photometry' is possible. An atlas of contour maps, a table of totalflux densities plus other radio source parameters, and references topublished radio maps are given.

The supernova rate in Shapley-Ames galaxies
A visual search for SNs in 748 Shapley-Ames galaxies during the 5-yearperiod from November 1, 1980 to October 31, 1985 has yielded SN rates of0.3h-squared, 0.4h-squared, and 1.1h-squared for objects of types Ia,Ib, and II, respectively. These data are judged to imply that Tammann's(1974, 1982) SN rates are probably too high by a factor of about 3. Fora Galactic luminosity of 2 x 10 to the 10th solar L(B), the predicted SNrates in the Milky Way system are 0.6h-squared, 0.8h-squared, and2.2h-squared/century, respectively, for the three aforementioned types.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:12h32m17.40s
Aparent dimensions:3.311′ × 2.089′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4504

→ Request more catalogs and designations from VizieR