Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 2903


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Oxygen abundances in the most oxygen-rich spiral galaxies
Oxygen abundances in the spiral galaxies expected to be richest inoxygen are estimated. The new abundance determinations are based on therecently discovered ff relation between auroral and nebular oxygen-linefluxes in high-metallicity HII regions. We find that the maximumgas-phase oxygen abundance in the central regions of spiral galaxies is12+log(O/H) ~ 8.75. This value is significantly lower (by a factor of>~5) than the previously accepted value. The central oxygen abundancein the Milky Way is similar to that in other large spirals.

Scale Heights of Non-Edge-on Spiral Galaxies
We present a method of calculating the scale height of non-edge-onspiral galaxies, together with a formula for errors. The method is basedon solving Poisson's equation for a logarithmic disturbance of matterdensity in spiral galaxies. We show that the spiral arms can not extendto inside the ``forbidden radius'' r0, due to the effect ofthe finite thickness of the disk. The method is tested by re-calculatingthe scale heights of 71 northern spiral galaxies previously calculatedby Ma, Peng & Gu. Our results differ from theirs by less than 9%. Wealso present the scale heights of a further 23 non-edge-on spiralgalaxies.

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

The Polycyclic Aromatic Hydrocarbon Emission Deficit in Low-Metallicity Galaxies-A Spitzer View
Archival observations of 18 starburst galaxies that span a wide range inmetallicity reveal for the first time a correlation between the ratio ofemission-line fluxes of [Fe II] at 26 μm and [Ne II] at 12.8 μmand the 7.7 μm PAH strength, with the [Fe II]/[Ne II] flux ratiodecreasing with increasing PAH strength. We also find a strongcorrelation between the [Fe II]/[Ne II] flux ratio and the host galaxymetallicity, with the flux ratio decreasing with increasing metallicity.Since [Fe II] emission has been linked primarily to supernova shocks, weattribute the high [Fe II]/[Ne II] ratios in low-metallicity galaxies toenhanced supernova activity. We consider this to be a dominant mechanismfor PAH destruction, rather than grain destruction in photoionizedregions surrounding young massive stars. We also consider whether theextreme youth of the low-metallicity galaxies is responsible for thelack of PAH emission.

Objective Classification of Spiral Galaxies Having Extended Rotation Curves Beyond the Optical Radius
We carry out an objective classification of four samples of spiralgalaxies having extended rotation curves beyond the optical radius. Amultivariate statistical analysis (viz., principal component analysis[PCA]) shows that about 96% of the total variation is due to twocomponents, one being the combination of absolute blue magnitude andmaximum rotational velocity beyond the optical region and the otherbeing the central density of the halo. On the basis of PCA a fundamentalplane has been constructed that reduces the scatter in the Tully-Fisherrelation up to a maximum of 16%. A multiple stepwise regression analysisof the variation of the overall shape of the rotation curves shows thatit is mainly determined by the central surface brightness, while theshape purely in the outer part of the galaxy (beyond the optical radius)is mainly determined by the size of the galactic disk.

Advanced Camera for Surveys Imaging of 25 Galaxies in Nearby Groups and in the Field
We present Hubble Space Telescope Advanced Camera for Surveys images andcolor-magnitude diagrams for 25 nearby galaxies with radial velocitiesVLG<500 km s-1. Distances are determined basedon the luminosities of stars at the tip of the red giant branch thatrange from 2 to 12 Mpc. Two of the galaxies, NGC 4163 and IC 4662, arefound to be the nearest known representatives of blue compact dwarfobjects. Using high-quality data on distances and radial velocities of110 nearby field galaxies, we derive their mean Hubble ratio to be 68 kms-1 Mpc-1 with a standard deviation of 15 kms-1 Mpc-1. Peculiar velocities of most of thegalaxies, Vpec=VLG-68D, follow a Gaussiandistribution with σv=63 km s-1 but with atail toward high negative values. Our data display the known correlationbetween peculiar velocity and galaxy elevation above the LocalSupercluster plane. The small observed fraction of galaxies with highpeculiar velocities, Vpec<-500 km s-1, may beunderstood as objects associated with nearby groups (Coma I, Eridanus)outside the local volume.

A Comparison of Hα and Stellar Scale Lengths in Virgo and Field Spirals
The scale lengths of the old stars and ionized gas distributions arecompared for similar samples of Virgo Cluster members and field spiralgalaxies via Hα and broad R-band surface photometry. While theR-band and Hα scale lengths are, on average, comparable for thecombined sample, we find significant differences between the field andcluster samples. While the Hα scale lengths of the field galaxiesare a factor of 1.14+/-0.07 longer, on average, than their R-band scalelengths, the Hα scale lengths of Virgo Cluster members are, onaverage, 20% smaller than their R-band scale lengths. Furthermore, inVirgo, the scale length ratios are correlated with the size of thestar-forming disk: galaxies with smaller overall Hα extents alsoshow steeper radial falloff of star formation activity. At the sametime, we find no strong trends in scale length ratio as a function ofother galaxy properties, including galaxy luminosity, inclination,morphological type, central R-band light concentration, or bar type. Ourresults for Hα emission are similar to other results for dustemission, suggesting that Hα and dust have similar distributions.The environmental dependence of the Hα scale length placesadditional constraints on the evolutionary process(es) that cause gasdepletion and a suppression of the star formation rate in clusters ofgalaxies.

Thermal and non-thermal components of the interstellar medium at sub-kiloparsec scales in galaxies
Aims. We present new radio continuum observations of ten BIMA SONGgalaxies, taken at 1.4 GHz with the Very Large Array. These observationsallow us to extend the study of the relationships between the radiocontinuum (RC) and CO emission to 22 CO luminous galaxies for whichsingle dish CO images have been added to interferometric data. NewSpitzer infrared (IR) images of six of these galaxies have beenreleased. The analysis of these high resolution images allowed us toprobe the RC-IR-CO correlations down to linear scales of a few hundredpc. Methods: .We compare the point-by-point RC, CO and mid-IRintensities across entire galaxy disks, producing radial profiles andspatially resolved images of the RC/CO and RC/mid-IR ratios.Results: .For the 22 galaxies analysed, the RC-CO correlation on scalesfrom ~10 kpc down to ~100 pc is nearly linear and has a scatter of afactor of two, i.e. comparable to that of the global correlations. Thereis no evidence for any severe degradation of the scatter below the kpcscale. This also applies to the six galaxies for which high-resolutionmid-IR data are available. In the case of NGC 5194,we find that the non-thermal radio spectral index is correlated with theRC/FIR ratio. Conclusions: .The scatter of the point-by-pointcorrelations does not increase significantly with spatial resolution. Wethus conclude that we have not yet probed the physical scales at whichthe correlations break down. However, we observe local deviations fromthe correlations in regions with a high star formation rate, such as thespiral arms, where we observe a flat radio spectrum and a low RC/FIRratio. In the intra-arm regions and in the peripheral regions of thedisk, the RC/FIR is generally higher and it is characterized by asteepening of the radio spectrum.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

Molecular gas in the galaxy cluster Abell 262. CO observations of UGC 1347 and other galaxies of the cluster
We present millimeter CO line emission observations of 12 galaxieswithin the Abell 262 cluster, together with L_FIRdata, in the context of a possible molecular gas deficiency within theregion of the cluster center. Several indications of the presence ofsuch a deficiency are highlighted and connected to a model ofcirrus-like cloud stripping. The model predicts a drop in the average100 μm flux density of galaxies in the core of the cluster comparedto the average 100 μm flux density in the outer regions, which isactually indicated in the IRAS data of the cluster members. This drop isexplained by the decrease in the total hydrogen column density N(H) and,therefore, also includes a decrease in the molecular gas content. Inaddition to results for the global CO content of the galaxy sample,high-resolution interferometric CO(1-0) observations of one of thecluster members, UGC 1347, exemplify the spatial distribution of themolecular gas in a galaxy of the cluster. With these observations, itwas possible to confirm the existence of a bright off-nuclearCO-emission source and to derive molecular masses and line ratios forthis source and the nucleus.

Detection of Neutrinos from Supernovae in Nearby Galaxies
While existing detectors would see a burst of many neutrinos from aMilky Way supernova, the supernova rate is only a few per century. As analternative, we propose the detection of ˜1 neutrino per supernovafrom galaxies within 10 Mpc, in which there were at least 9core-collapse supernovae since 2002. With a future 1 Mton scaledetector, this could be a faster method for measuring the supernovaneutrino spectrum, which is essential for calibrating numerical modelsand predicting the redshifted diffuse spectrum from distant supernovae.It would also allow a ≳104 times more precise triggertime than optical data alone for high-energy neutrinos and gravitationalwaves.

The Schmidt Law at High Molecular Densities
We combined Hα and recent high-resolution12CO(J=1‑0) data to consider the quantitative relationbetween the gas mass and the star-formation rate, or the so-calledSchmidt law in nearby spiral galaxies at regions of high moleculardensity. The relation between the gas quantity and the star-formationrate has not been previously studied for high-density regions, but usinghigh-resolution CO data obtained at the Nobeyama Millimeter Array, wefound that the Schmidt law is valid at densities as high as 103Modotpc-2 for sample spiral galaxies, which is anorder of magnitude denser than what has been known to be the maximumdensity at which the empirical law holds for non-starburst galaxies.Furthermore, we obtained a Schmidt law index of N = 1.33 ± 0.09and a roughly constant star-formation efficiency over the entire disk,even within several hundred parsecs of the nucleus. These results implythat the physics of star formation does not change in the centralregions of spiral galaxies. Comparisons with starburst galaxies are alsogiven. We find a possible discontinuity in the Schmidt law betweennormal and starburst galaxies.

BHαBAR: big Hα kinematical sample of barred spiral galaxies - I. Fabry-Perot observations of 21 galaxies
We present the Hα gas kinematics of 21 representative barredspiral galaxies belonging to the BHαBAR sample. The galaxies wereobserved with FaNTOmM, a Fabry-Perot integral-field spectrometer, onthree different telescopes. The three-dimensional data cubes wereprocessed through a robust pipeline with the aim of providing the mosthomogeneous and accurate data set possible useful for further analysis.The data cubes were spatially binned to a constant signal-to-noiseratio, typically around 7. Maps of the monochromatic Hα emissionline and of the velocity field were generated and the kinematicalparameters were derived for the whole sample using tilted-ring models.The photometrical and kinematical parameters (position angle of themajor axis, inclination, systemic velocity and kinematical centre) arein relative good agreement, except perhaps for the later-type spirals.

Dust in spiral galaxies: global properties
We present and analyse high-quality Submillimetre Common-User BolometerArray (SCUBA) 850- and 450-μm images of 14 local spiral galaxies,including the detection of dust well out into the extended disc in manycases. We use these data in conjunction with published far-infrared fluxdensities from IRAS and ISO, and millimetre-wave measurements fromground-based facilities to deduce the global properties of the dust inthese galaxies, in particular temperature and mass. We find that simpletwo-temperature greybody models of fixed dust emissivity index β= 2and with typical temperatures of 25 < Twarm < 40 K and10 < Tcold < 20 K provide good fits to the overallspectral energy distributions. The dust mass in the cold componentcorrelates with the mass in atomic hydrogen and the mass in the warmcomponent correlates with the mass in molecular hydrogen. These resultsthus fit the simple picture in which the cold dust is heatedpredominantly by the interstellar radiation field, while the hot dust isheated predominantly by OB stars in more active regions, although weargue that there is some mixing. The mean gas-to-dust mass ratio is 120+/- 60, very similar to that found within our own galaxy and roughly afactor of 10 lower than that derived from IRAS data alone. Thegas-to-dust mass ratios in the warm, molecular component are on averagehigher than those in the cold, atomic component. We compare ourmodelling results with similar results for more luminous spiral galaxiesselected at far-infrared wavelengths by the SCUBA Local Universe GalaxySurvey. We find that whilst the total dust mass distributions of the twosamples are indistinguishable, they have significantly different dusttemperature distributions in both the warm and cold components. Wesuggest that this difference might be related to the level of starformation activity in these systems, with the more active galaxieshaving more intense interstellar radiation fields and higher dusttemperatures.

Chemical radial gradient evolution in the disk of a massive galaxy due to its minor merger with a dwarf galaxy.
Not Available

First Results from THINGS: The HI Nearby Galaxy Survey
We describe The HI Nearby Galaxy Survey (THINGS), the largestprogramever undertaken at the Very Large Array to perform 21-cm HIobservations of thehighest quality (˜ 7'', ≤ 5 km s^{-1}resolution) ofnearby galaxies. The goal of THINGS is to investigatekeycharacteristics related to galaxy morphology, star formation andmassdistribution across the Hubble sequence. A sample of 34 objectswithdistances between 3 and 10 Mpc will be observed, covering a widerangeof evolutionary stages and properties. Data from THINGSwillcomplement SINGS, the Spitzer Infrared Nearby Galaxy Survey. Forthe THINGS sample, high-quality observations at comparable resolutionwillthus be available from the X-ray regime through to the radio partofthe spectrum. THINGS data can be used to investigate issues such asthesmall-scale structure of the ISM, its three-dimensional structure,the(dark) matter distribution and processes leading to starformation. Todemonstrate the quality of the THINGS data products, wepresent someprelimary HI maps here of four galaxies from the THINGSsample.

Integral Field Spectroscopy of 23 Spiral Bulges
We have obtained integral-field spectroscopy for 23 spiral bulges usingINTEGRAL on the William Herschel Telescope and SPIRAL on theAnglo-Australian Telescope. This is the first two-dimensional surveydirected solely at the bulges of spiral galaxies. Eleven galaxies of thesample do not have previous measurements of the stellar velocitydispersion (σ*). These data are designed to complementour Space Telescope Imaging Spectrograph program for estimating blackhole masses in the range 106-108 Msolarusing gas kinematics from nucleated disks. These observations will serveto derive the stellar dynamical bulge properties using the traditionalMg b and Ca II triplets. We use both cross-correlation and maximumpenalized likelihood to determine projected σ* in thesesystems and present radial velocity fields, major axis rotation curves,curves of growth, and σ* fields. Usingcross-correlation to extract the low-order two-dimensional stellardynamics we generally see coherent radial rotation and irregularvelocity dispersion fields suggesting that σ* is anontrivial parameter to estimate.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

The Compression of Dark Matter Halos by Baryonic Infall
The initial radial density profiles of dark matter halos are laid downby gravitational collapse in hierarchical structure formation scenariosand are subject to further compression as baryons cool and settle to thehalo centers. Here we describe an explicit implementation of thealgorithm, originally developed by Young, to calculate changes to thedensity profile as the result of adiabatic infall in a spherical halomodel. Halos with random motion are more resistant to compression thanare those in which random motions are neglected, which is a key weaknessof the simple method widely employed. Young's algorithm results indensity profiles in excellent agreement with those from N-bodysimulations. We show how the algorithm can be applied to determine theoriginal uncompressed halos of real galaxies, a step that must becomputed with care in order to enable a confrontation with theoreticalpredictions from theories such as ΛCDM.

The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies
I investigate the baryonic Tully-Fisher relation for a sample ofgalaxies with extended 21 cm rotation curves spanning the range 20 kms-1<~Vf<=300 km s-1. A variety ofscalings of the stellar mass-to-light ratio Υ* areconsidered. For each prescription for Υ*, I give fitsof the form Md=AVxf.Presumably, the prescription that comes closest to the correct valuewill minimize the scatter in the relation. The fit with minimum scatterhas A=50 Msolar km-4 s4 andx=4. This relation holds over five decades in mass. Galaxy color,stellar fraction, and Υ* are correlated with eachother and with Md, in the sense that more massivegalaxies tend to be more evolved. There is a systematic dependence ofthe degree of maximality of disks on surface brightness. High surfacebrightness galaxies typically have Υ*~3/4 of themaximum disk value, while low surface brightness galaxies typicallyattain ~1/4 of this amount.

On the Relevance of the Tremaine-Weinberg Method Applied to an Hα Velocity Field: Pattern Speed Determination in M100 (NGC 4321)
The relevance of the Tremaine-Weinberg (TW) method is tested formeasuring bar, spiral, and inner structure pattern speeds using agaseous velocity field. The TW method is applied to various simulatedbarred galaxies in order to demonstrate its validity in seven differentconfigurations, including star formation and/or dark matter halo. Thereliability of the different physical processes involved and of thevarious observational parameters is also tested. The simulations showthat the TW method could be applied to gaseous velocity fields to get agood estimate of the bar pattern speed, under the condition that regionsof shocks are avoided and measurements are confined to regions where thegaseous bar is well formed. We successfully apply the TW method to theHα velocity field of the Virgo Cluster galaxy M100 (NGC 4321) andderive pattern speeds of 55+/-5 km s-1 kpc-1 forthe nuclear structure, 30+/-2 km s-1 kpc-1 for thebar, and 20+/-1 km s-1 kpc-1 for the spiralpattern, in full agreement with published determinations using the samemethod or alternative ones.

Secular Evolution via Bar-driven Gas Inflow: Results from BIMA SONG
We present an analysis of the molecular gas distributions in the 29barred and 15 unbarred spirals in the BIMA CO (J=1-0) Survey of NearbyGalaxies (SONG). For galaxies that are bright in CO, we confirm theconclusion by Sakamoto et al. that barred spirals have higher moleculargas concentrations in the central kiloparsec. The SONG sample alsoincludes 27 galaxies below the CO brightness limit used by Sakamoto etal. Even in these less CO-bright galaxies we show that high central gasconcentrations are more common in barred galaxies, consistent withradial inflow driven by the bar. However, there is a significantpopulation of early-type (Sa-Sbc) barred spirals (6 of 19) that have nomolecular gas detected in the nuclear region and have very little out tothe bar corotation radius. This suggests that in barred galaxies withgas-deficient nuclear regions, the bar has already driven most of thegas within the bar corotation radius to the nuclear region, where it hasbeen consumed by star formation. The median mass of nuclear moleculargas is over 4 times higher in early-type bars than in late-type (Sc-Sdm)bars. Since previous work has shown that the gas consumption rate is anorder of magnitude higher in early-type bars, this implies that theearly types have significantly higher bar-driven inflows. The loweraccretion rates in late-type bars can probably be attributed to theknown differences in bar structure between early and late types. Despitethe evidence for bar-driven inflows in both early and late Hubble-typespirals, the data indicate that it is highly unlikely for a late-typegalaxy to evolve into an early type via bar-induced gas inflow.Nonetheless, secular evolutionary processes are undoubtedly present, andpseudobulges are inevitable; evidence for pseudobulges is likely to beclearest in early-type galaxies because of their high gas inflow ratesand higher star formation activity.

Metallicity Effects on Mid-Infrared Colors and the 8 μm PAH Emission in Galaxies
We examine colors from 3.6 to 24 μm as a function of metallicity(O/H) for a sample of 34 galaxies. The galaxies range over 2 orders ofmagnitude in metallicity. They display an abrupt shift in the 8μm-to-24 μm color for metallicities between one-third andone-fifth of the solar value. The mean 8-to-24 μm flux density ratiobelow and above 12+log(O/H)=8.2 is 0.08+/-0.04 and 0.70+/-0.53,respectively. We use mid-IR colors and spectroscopy to demonstrate thatthe shift is primarily due to a decrease in the 8 μm flux density, asopposed to an increase in the 24 μm flux density. This result is mostsimply interpreted as being due to a weakening at low metallicity of themid-IR emission bands usually attributed to PAHs (polycyclic aromatichydrocarbons) relative to the small-grain dust emission. However,existing empirical spectral energy distribution models cannot accountfor the observed short-wavelength (below 8 μm) colors of thelow-metallicity galaxies merely by reducing the strength of the PAHfeatures; some other emission source (e.g., hot dust) is required.

Light and Motion in the Local Volume
Using high-quality data on 149 galaxies within 10 Mpc, I find nocorrelation between luminosity and peculiar velocity at all. There is nounequivocal sign on scales of 1-2 Mpc of the expected gravitationaleffect of the brightest galaxies, in particular infall toward groups, orof infall toward the supergalactic plane on any scale. Either darkmatter is not distributed in the same way as luminous matter in thisregion, or peculiar velocities are not due to fluctuations in mass. Thesensitivity of peculiar velocity studies to the background model ishighlighted.

EGRET Upper Limits and Stacking Searches of Gamma-Ray Observations of Luminous and Ultraluminous Infrared Galaxies
We present a stacking analysis of EGRET γ-ray observations at thepositions of luminous and ultraluminous infrared galaxies. The latterwere selected from the recently presented HCN survey, which is thoughtto contain the most active star-forming regions of the universe.Different sorting criteria are used, and since there is no positivecollective detection of γ-ray emission from these objects, wedetermined both collective and individual upper limits. The uppermostexcess we find appears in the case of ULIRGs ordered by redshift, at avalue of 1.8 σ.

Probing Halos of Galaxies at Very Large Radii Using Background QSOs
Gaseous halos of nine nearby galaxies (with redshifts cz<6000 kms-1) were probed at large galactocentric radii usingbackground quasars observed with the Hubble Space Telescope Goddard HighResolution Spectrograph and the Space Telescope Imaging Spectrograph.The projected quasar-galaxy separations range from 55 to 387h-175 kpc. Lyα absorption lines weresuccessfully detected in the spectra of five quasars, at impactparameters of up to ~170 h-175 kpc from the centerof the nearby galaxy, and in each case at wavelengths consistent withthe galaxy's redshift. Our observations include the lowest redshiftLyα lines detected to date. H I velocity fields were obtained atthe Very Large Array for three of the galaxies in our sample (in onecase the velocity field was available from the literature) to derivetheir rotation curves. When comparing the inner rotation curves of thegalaxies with the velocity at large radius provided by the Lyαline, it is apparent that it is very difficult to explain the observedLyα velocity as due to gas in an extended rotating disk. In mostcases, one would need to invoke large warps in the outer gas disks andalso thick gas disks to reconcile the observed velocities with thepredicted ones. Indeed, in one case, the Lyα line velocityindicates, in fact, counterrotation with respect to the inner diskrotation. In light of these results, we conclude that in a typicalgalaxy there is no longer detectable atomic gas corotating in anextended disk at radii greater than 35α-1, whereα-1 is the stellar disk exponential scale length. Thecosmic web is the most likely origin for the detected Lyα lines.Our observations confirm the recent Bowen et al. correlation ofequivalent widths with the local volume density of galaxies around thesight line, and the observed equivalent widths of the lines areconsistent with expectations of the cosmic web.Based on observations with the NASA ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS5-26555.

Chemical gradient evolution in massive galaxy disk due to its minor merger with dwarf galaxy.
Not Available

Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS Imaging and STIS Spectroscopy
We investigate the central regions of 23 spiral galaxies using SpaceTelescope Imaging Spectrograph (STIS) spectroscopy and archivalNear-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging. Thesample is taken from our program to determine the masses of centralmassive black holes (MBHs) in 54 nearby spiral galaxies. Stars arelikely to contribute significantly to any dynamical central massconcentration that we find in our MBH program, and this paper is part ofa series to investigate the nuclear properties of these galaxies. We usethe Nuker law to fit surface brightness profiles, derived from theNICMOS images, to look for nuclear star clusters and find possibleextended sources in three of the 23 galaxies studied (13%). The factthat this fraction is lower than that inferred from optical Hubble SpaceTelescope studies is probably due to the greater spatial resolution ofthose studies. Using R-H and J-H colors and equivalent widths ofHα emission (from the STIS spectra), we investigate the nature ofthe stellar population with evolutionary models. Under the assumption ofhot stars ionizing the gas, as opposed to a weak active galactic nucleus(AGN), we find that there are young stellar populations (~10-20 Myr);however, these data do not allow us to determine what percentage of thetotal nuclear stellar population they form. In addition, in an attemptto find any unknown AGN, we use [N II] and [S II] line flux ratios(relative to Hα) and find tentative evidence for weak AGNs in NGC1300 and NGC 4536.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555.

Study of DDO 68: nearest candidate for a young galaxy?
We present the results of optical spectroscopy and imaging with the SAO6 m telescope for the dwarf galaxy DDO 68 (UGC 5340 = VV 542), fallinginto the region of very low density of luminous (L > L*)galaxies (Lynx-Cancer void). Its deep images in V,R bands and in thenarrow Hα-filter show that this galaxy has the very irregularmorphology, with a long curved tail on the South and a ring-likestructure at the Northern edge. The latter consists of 5 separateregions, in three of which we could measure O/H by the classicalTe method. Their weighted mean oxygen abundance correspondsto 12+log (O/H)=7.21 ± 0.03, coincident within uncertainties withthose for I Zw 18. The (V-R) colour of DDO 68 is rather blue all overthe galaxy, indicating the youth of its stellar populations. Comparingthe (V-R)0 colour of the underlying exponential disk of0.12m±0.04 with the PEGASE.2 models for the evolving stellarclusters, we give the first estimate of the ages of the oldest stellarpopulation, which needs confirmation by the other colours and thephotometry of resolved stars. These ages are in the range of 200-900 Myrfor continuous star formation law, and ~100-115 Myr for theinstantaneous starburst. We discuss the properties and the possibleyouth of this nearby object (~2.3 times closer than the famous younggalaxy I Zw 18) in the context of its atypical environment.

A VLT study of metal-rich extragalactic H II regions. I. Observations and empirical abundances
We have obtained spectroscopic observations from 3600 Åto 9200Åwith FORS at the Very Large Telescope for approximately 70 Hiiregions located in the spiral galaxies NGC 1232, NGC 1365, NGC 2903,NGC 2997 and NGC 5236. These data are part of a project to measure thechemical abundances and characterize the massive stellar content ofmetal-rich extragalactic H iiregions. In this paper we describe ourdataset, and present emission line fluxes for the whole sample. In 32 Hiiregions we measure at least one of the following auroral lines: [S ii]λ4072, [N ii] λ5755, [S iii] λ6312 and [O ii]λ7325. From these we derive electron temperatures, as well asoxygen, nitrogen and sulphur abundances, using classical empiricalmethods (both so-called “Te-based methods” and“strong line methods”). Under the assumption that thetemperature does not introduce severe biases, we find that the mostmetal-rich nebulae with detected auroral lines are found at 12 +log(O/H) ≃ 8.9, i.e. about 60% larger than the adopted solarvalue. However, classical abundance determinations in metal-rich Hiiregions may be severely biased and must be tested with realisticphotoionization models. The spectroscopic observations presented in thispaper will serve as a homogeneous and high-quality database for suchpurposes.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Lion
Right ascension:09h32m09.70s
Declination:+21°30'02.0"
Aparent dimensions:11.482′ × 5.248′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 2903
HYPERLEDA-IPGC 27077

→ Request more catalogs and designations from VizieR