Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 2841



Upload your image

DSS Images   Other Images

Related articles

Scalar potential model of redshift and discrete redshift
On the galactic scale the universe is inhomogeneous and redshift z isoccasionally less than zero. A scalar potential model (SPM) that linksthe galaxy scale z to the cosmological scale z of the Hubble Law ispostulated. Several differences among galaxy types suggest that spiralgalaxies are Sources and that early type, lenticular, and irregulargalaxies are Sinks of a scalar potential field. The morphology-radiusand the intragalactic medium cluster observations support the movementof matter from Source galaxies to Sink galaxies. A cell structure ofgalaxy groups and clusters is proposed to resolve a paradox concerningthe scalar potential like the Olber’s paradox concerning light.For the sample galaxies, the ratio of the luminosity of Source galaxiesto the luminosity of Sink galaxies approaches 2.7 ± 0.1. Anequation is derived from sample data, which is anisotropic andinhomogeneous, relating z of and the distance D to galaxies. Thecalculated z has a correlation coefficient of 0.88 with the measured zfor a sample of 32 spiral galaxies with D calculated using Cepheidvariable stars. The equation is consistent with z < 0 observations ofclose galaxies. At low cosmological distances, the equation reduces to z≈ exp(KD)‑1 ≈ KD, where K is a constant, positive value. Theequation predicts z from galaxies over 18 Gpc distant approaches aconstant value on the order of 500. The SPM of z provides a physicalbasis for the z of particle photons. Further, the SPM qualitativelysuggests the discrete variations in z, which was reported by Tifft[Tifft, W.G., 1997. Astrophy. J. 485, 465] and confirmed by others, areconsistent with the SPM.

On the origin of warps and the role of the intergalactic medium
There is still no consensus as to what causes galactic discs to becomewarped. Successful models should account for the frequent occurrence ofwarps in quite isolated galaxies, their amplitude as well as theobserved azimuthal and vertical distributions of the HI layer.Intergalactic accretion flows and intergalactic magnetic fields may bendthe outer parts of spiral galaxies. In this paper we consider theviability of these non-gravitational torques to take the gas off theplane. We show that magnetically generated warps are clearly flawedbecause they would wrap up into a spiral in less than two or threegalactic rotations. The inclusion of any magnetic diffusivity to dilutethe wrapping effect causes the amplitude of the warp to damp. We alsoconsider the observational consequences of the accretion of anintergalactic plane-parallel flow at infinity. We have computed theamplitude and warp asymmetry in the accretion model, for a disc embeddedin a flattened dark matter halo, including self-consistently thecontribution of the modes with azimuthal wavenumbers m= 0 and m= 1.Since the m= 0 component, giving a U-shaped profile, is not negligiblecompared to the m= 1 component, this model predicts quite asymmetricwarps, maximum gas displacements on the two sides in the ratio 3 : 2 forthe preferred Galactic parameters, and the presence of a fraction ~3.5per cent of U-shaped warps, at least. The azimuthal dependence of themoment transfer by the ram pressure would produce a strong asymmetry inthe thickness of the HI layer and asymmetric density distributions in z,in conflict with observational data for the warp in our Galaxy and inexternal galaxies. The amount of accretion that is required to explainthe Galactic warp would give gas scaleheights in the far outer disc thatare too small. We conclude that accretion of a flow with no net angularmomentum cannot be the main and only cause of warps.

Cepheid Distances to SNe Ia Host Galaxies Based on a Revised Photometric Zero Point of the HST WFPC2 and New PL Relations and Metallicity Corrections
With this paper we continue the preparation for a forthcoming summaryreport of our experiment with the HST to determine the Hubble constantusing Type Ia supernovae as standard candles. Two problems areaddressed. (1) We examine the need for, and determine the value of, thecorrections to the apparent magnitudes of our program Cepheids in the 11previous calibration papers due to sensitivity drifts and chargetransfer effects of the HST WFPC2 camera over the life time of theexperiment from 1992 to 2001. (2) The corrected apparent magnitudes areapplied to all our previous photometric data from which revised distancemoduli are calculated for the eight program galaxies that are parents tothe calibrator Ia supernovae. Two different Cepheid P-L relations areused; one for the Galaxy and one for the LMC. These differ both in slopeand zero point at a fixed period. The procedures for determining theabsorption and reddening corrections for each Cepheid are discussed.Corrections for the effects of metallicity differences between theprogram galaxies and the two adopted P-L relations are derived andapplied. The distance moduli derived here for the eight supernovaeprogram galaxies, and for 29 others, average 0.20 mag fainter (moredistant) than those derived by Gibson et al. and Freedman et al. intheir 2000 and 2001 summary papers for reasons discussed in this paper.The effect on the Hubble constant is the subject of our forthcomingsummary paper.

Dark and Baryonic Matter in Bright Spiral Galaxies. I. Near-Infrared and Optical Broadband Surface Photometry of 30 Galaxies
We present photometrically calibrated images and surface photometry inthe B, V, R, J, H, and K bands of 25, and in the g, r, and K bands offive nearby bright (B0T<12.5 mag) spiralgalaxies with inclinations of 30°-65° spanning the Hubblesequence from Sa to Scd. Data are from The Ohio State University BrightSpiral Galaxy Survey, the Two Micron All Sky Survey, and the SloanDigital Sky Survey Second Data Release. Radial surface brightnessprofiles are extracted, and integrated magnitudes are measured from theprofiles. Axis ratios, position angles, and scale lengths are measuredfrom the near-infrared images. A one-dimensional bulge/diskdecomposition is performed on the near-infrared images of galaxies witha nonnegligible bulge component, and an exponential disk is fit to theradial surface brightness profiles of the remaining galaxies.Based in part on observations obtained at the Cerro TololoInter-American Observatory, operated by the Association of Universitiesfor Research in Astronomy, Inc., under a cooperative agreement with theNational Science Foundation.

Mid-Infrared Spectral Diagnostics of Nuclear and Extranuclear Regions in Nearby Galaxies
Mid-infrared diagnostics are presented for a large portion of theSpitzer Infrared Nearby Galaxies Survey (SINGS) sample plus archivaldata from ISO and Spitzer. The SINGS data set includes low- andhigh-resolution spectral maps and broadband imaging in the infrared forover 160 nuclear and extranuclear regions within 75 nearby galaxiesspanning a wide range of morphologies, metallicities, luminosities, andstar formation rates. Our main result is that these mid-infrareddiagnostics effectively constrain a target's dominant power source. Thecombination of a high-ionization line index and PAH strength serves asan efficient discriminant between AGNs and star-forming nuclei,confirming progress made with ISO spectroscopy on starbursting andultraluminous infrared galaxies. The sensitivity of Spitzer allows us toprobe fainter nuclear and star-forming regions within galaxy disks. Wefind that both star-forming nuclei and extranuclear regions stand apartfrom nuclei that are powered by Seyfert or LINER activity. In fact, weidentify areas within four diagnostic diagrams containing >90%Seyfert/LINER nuclei or >90% H II regions/H II nuclei. We also findthat, compared to starbursting nuclei, extranuclear regions typicallyseparate even further from AGNs, especially for low-metallicityextranuclear environments. In addition, instead of the traditionalmid-infrared approach to differentiating between AGNs and star-formingsources that utilizes relatively weak high-ionization lines, we showthat strong low-ionization cooling lines of X-ray-dominated regions like[Si II] 34.82 μm can alternatively be used as excellentdiscriminants. Finally, the typical target in this sample showsrelatively modest interstellar electron density (~400 cm-3)and obscuration (AV~1.0 mag for a foreground screen),consistent with a lack of dense clumps of highly obscured gas and dustresiding in the emitting regions.

Determination of the Hubble Constant, the Intrinsic Scatter of Luminosities of Type Ia Supernovae, and Evidence for Nonstandard Dust in Other Galaxies
A sample of 109 Type Ia supernovae (SNe Ia) with recession velocity<~30,000 km s-1 is compiled from published SN Ia lightcurves to explore the expansion rate of the local universe. Based on thecolor parameter ΔC12 and the decline rateΔm15, we found that the average absorption-to-reddeningratios for SN Ia host galaxies are RUBVI=4.37+/-0.25,3.33+/-0.11, 2.30+/-0.11, and 1.18+/-0.11, which are systematicallylower than the standard values in the Galaxy. We investigated thecorrelations of the intrinsic luminosity with light-curve decline rate,color index, and SN environmental parameters. In particular, we foundthat SNe Ia in E/S0 galaxies close to the central region are brighterthan those in the outer region, which may suggest a possible metallicityeffect on SN luminosity. The dependence of SN luminosity on galacticenvironment disappears after corrections for the extinction andΔC12. The Hubble diagrams constructed using 73 Hubbleflow SNe Ia yield a 1 σ scatter of <~0.12 mag in BVI bands and~0.16 mag in U band. The luminosity difference between normal SNe Ia andpeculiar objects (including SN 1991bg-like and SN 1991T-like events) hasnow been reduced to within 0.15 mag via ΔC12correction. We use the same precepts to correct the nearby SNe Ia withCepheid distances and found that the fully corrected absolute magnitudesof SNe Ia are MB=-19.33+/-0.06 andMV=-19.27+/-0.05. We deduced a value for the Hubble constantof H0=72+/-6 (total) km s-1 Mpc-1.

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)
We present Spitzer 3.6-160 μm images, Spitzer mid-infrared spectra,and JCMT SCUBA 850 μm images of the Sombrero Galaxy (NGC 4594), an Sagalaxy with a 109 Msolar low-luminosity activegalactic nucleus (AGN). The brightest infrared sources in the galaxy arethe nucleus and the dust ring. The spectral energy distribution of theAGN demonstrates that, while the environment around the AGN is aprominent source of mid-infrared emission, it is a relatively weaksource of far-infrared emission, as had been inferred for AGNs inprevious research. The weak nuclear 160 μm emission and thenegligible polycyclic aromatic hydrocarbon emission from the nucleusalso implies that the nucleus is a site of only weak star formationactivity and the nucleus contains relatively little cool interstellargas needed to fuel such activity. We propose that this galaxy may berepresentative of a subset of low-ionization nuclear emission regiongalaxies that are in a quiescent AGN phase because of the lack of gasneeded to fuel circumnuclear star formation and Seyfert-like AGNactivity. Surprisingly, the AGN is the predominant source of 850 μmemission. We examine the possible emission mechanisms that could giverise to the 850 μm emission and find that neither thermal dustemission, CO line emission, bremsstrahlung emission, nor the synchrotronemission observed at radio wavelengths can adequately explain themeasured 850 μm flux density by themselves. The remainingpossibilities for the source of the 850 μm emission include acombination of known emission mechanisms, synchrotron emission that isself-absorbed at wavelengths longer than 850 μm, or unidentifiedspectral lines in the 850 μm band.

Dark and Baryonic Matter in Bright Spiral Galaxies. II. Radial Distributions for 34 Galaxies
We decompose the rotation curves of 34 bright spiral galaxies intobaryonic and dark matter components. Stellar mass profiles are createdby applying color-M/L relations to near-infrared and optical photometry.We find that the radial profile of the baryonic-to-dark-matter ratio isself-similar for all galaxies, when scaled to the radius at which thecontribution of the baryonic mass to the rotation curve equals that ofthe dark matter (RX). We argue that this is due to thequasi-exponential nature of disks and rotation curves that are nearlyflat after an initial rise. The radius RX is found tocorrelate most strongly with baryonic rotation speed, such that galaxieswith RX measurements that lie further out in their disksrotate faster. This quantity also correlates very strongly with stellarmass, Hubble type, and observed rotation speed; B-band central surfacebrightness is less related to RX than these other galaxyproperties. Most of the galaxies in our sample appear to be close tomaximal disk. For these galaxies, we find that maximum observed rotationspeeds are tightly correlated with maximum rotation speeds predictedfrom the baryon distributions, such that one can create a Tully-Fisherrelation based on surface photometry and redshifts alone. Finally, wecompare our data to the NFW parameterization for dark matter profileswith and without including adiabatic contraction as it is most commonlyimplemented. Fits are generally poor, and all but two galaxies arebetter fit if adiabatic contraction is not performed. In order to havebetter fits, and especially to accommodate adiabatic contraction,baryons would need to contribute very little to the total mass in theinner parts of galaxies, seemingly in contrast with other observationalconstraints.

Central Star Formation and PAH Profiles in Pseudobulges and Classical Bulges
I use Spitzer 3.6-8.0 μm color profiles and surface brightnessprofiles of polycyclic aromatic hydrocarbons (PAHs) to compare theradial structure of star formation in pseudobulges and classical bulges.Pseudobulges are ``bulges'' that form through secular evolution, ratherthan mergers. In this study, pseudobulges are identified using thepresence of disklike structure in the center of the galaxy (nuclearspirals, nuclear bars, and high ellipticity in bulge); classical bulgesare those galaxy bulges with smooth isophotes that are round compared tothe outer disk and show no disky structure in their bulge. I show thatgalaxies structurally identified as having pseudobulges have highercentral star formation rates than those of classical bulges.Furthermore, I also show that galaxies identified as having classicalbulges have remarkably regular star formation profiles. The colorprofiles of galaxies with classical bulges show a star-forming outerdisk with a sharp change, consistent with a decline in star formationrates, toward the center of the galaxy. Classical bulges have a nearlyconstant inner profile (r<~1.5 kpc) that is similar to ellipticalgalaxies. Pseudobulges in general show no such transition in starformation properties from the outer disk to the central pseudobulge.Thus, I conclude that pseudobulges and classical bulges do in fact formtheir stars via different mechanisms. Furthermore, this adds to theevidence that classical bulges form most of their stars in fast episodicbursts, in a similar fashion to elliptical galaxies, whereaspseudobulges form stars from longer lasting secular processes.

Objective Classification of Spiral Galaxies Having Extended Rotation Curves Beyond the Optical Radius
We carry out an objective classification of four samples of spiralgalaxies having extended rotation curves beyond the optical radius. Amultivariate statistical analysis (viz., principal component analysis[PCA]) shows that about 96% of the total variation is due to twocomponents, one being the combination of absolute blue magnitude andmaximum rotational velocity beyond the optical region and the otherbeing the central density of the halo. On the basis of PCA a fundamentalplane has been constructed that reduces the scatter in the Tully-Fisherrelation up to a maximum of 16%. A multiple stepwise regression analysisof the variation of the overall shape of the rotation curves shows thatit is mainly determined by the central surface brightness, while theshape purely in the outer part of the galaxy (beyond the optical radius)is mainly determined by the size of the galactic disk.

Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts
Using archival data of low-redshift (z<0.01 Center for Astrophysicsand SUSPECT databases) Type Ia supernovae (SNe Ia) and recentobservations of high-redshift (0.161.7] SNe Ia, which are also subluminous. Inaddition, we give the first direct evidence in two high-z SN Ia spectraof a double-absorption feature in Ca II λ3945, an event alsoobserved, although infrequently, in low-redshift SN Ia spectra (6 out of22 SNe Ia in our local sample). Moreover, echoing the recent studies ofDessart & Hillier in the context of Type II supernovae (SNe II), wesee similar P Cygni line profiles in our large sample of SN Ia spectra.First, the magnitude of the velocity location at maximum profileabsorption may underestimate that at the continuum photosphere, asobserved, for example, in the optically thinner line S II λ5640.Second, we report for the first time the unambiguous and systematicintrinsic blueshift of peak emission of optical P Cygni line profiles inSN Ia spectra, by as much as 8000 km s-1. All the high-z SNeIa analyzed in this paper were discovered and followed up by the ESSENCEcollaboration and are now publicly available.Based in part on observations obtained at the Cerro TololoInter-American Observatory, which is operated by the Association ofUniversities for Research in Astronomy (AURA), Inc., under cooperativeagreement with the National Science Foundation (NSF); the EuropeanSouthern Observatory, Chile (ESO program 170.A-0519) the GeminiObservatory, which is operated by AURA under a cooperative agreementwith the NSF on behalf of the Gemini partnership (the NSF [UnitedStates], the Particle Physics and Astronomy Research Council [UnitedKingdom], the National Research Council [Canada], CONICYT [Chile], theAustralian Research Council [Australia], CNPq [Brazil], and CONICET[Argentina]) (programs GN-2002B-Q-14, GN-2003B-Q-11, and GS-2003B-Q-11)the Magellan Telescopes at Las Campanas Observatory; the MMTObservatory, a joint facility of the Smithsonian Institution and theUniversity of Arizona; and the F. L. Whipple Observatory, which isoperated by the Smithsonian Astrophysical Observatory. Some of the datapresented herein were obtained at the W. M. Keck Observatory, which isoperated as a scientific partnership among the California Institute ofTechnology, the University of California, and the National Aeronauticsand Space Administration. The Observatory was made possible by thegenerous financial support of the W. M. Keck Foundation.

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

A Comparison of Hα and Stellar Scale Lengths in Virgo and Field Spirals
The scale lengths of the old stars and ionized gas distributions arecompared for similar samples of Virgo Cluster members and field spiralgalaxies via Hα and broad R-band surface photometry. While theR-band and Hα scale lengths are, on average, comparable for thecombined sample, we find significant differences between the field andcluster samples. While the Hα scale lengths of the field galaxiesare a factor of 1.14+/-0.07 longer, on average, than their R-band scalelengths, the Hα scale lengths of Virgo Cluster members are, onaverage, 20% smaller than their R-band scale lengths. Furthermore, inVirgo, the scale length ratios are correlated with the size of thestar-forming disk: galaxies with smaller overall Hα extents alsoshow steeper radial falloff of star formation activity. At the sametime, we find no strong trends in scale length ratio as a function ofother galaxy properties, including galaxy luminosity, inclination,morphological type, central R-band light concentration, or bar type. Ourresults for Hα emission are similar to other results for dustemission, suggesting that Hα and dust have similar distributions.The environmental dependence of the Hα scale length placesadditional constraints on the evolutionary process(es) that cause gasdepletion and a suppression of the star formation rate in clusters ofgalaxies.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Chemically Decoupled Nuclei in Five Lenticular Galaxies from SAURON Data
We analyze data from the SAURON integral-field spectrograph of theWilliam Herschel 4-m telescope for five lenticular galaxies in which wepreviously found chemically decoupled nuclei from observations with theMultipupil Fiber Spectrograph of the 6-m Special AstrophysicalObservatory telescope. In a larger field of view, we confirmed thepresence of peaks of the equivalent width of the Mg Ib λ5175absorption line in the nuclei of all five galaxies. However, thestructure of the chemically decoupled regions turned out to be highlyvaried even in such a small sample: from compact unresolved knots todisks with an extent of several hundred parsecs and, in one case, atriaxial compact minibar-type structure. We confirmed the presence of aninner gaseous polar ring in NGC 7280 and found it in NGC 7332. In theirouter parts, the planes of these polar rings are warped toward the planeof stellar rotation in such a way that the gas counterrotates withrespect to the stars. This behavior of the gas in a triaxial potentialwas predicted by several theoretical models.

First Results from THINGS: The HI Nearby Galaxy Survey
We describe The HI Nearby Galaxy Survey (THINGS), the largestprogramever undertaken at the Very Large Array to perform 21-cm HIobservations of thehighest quality (˜ 7'', ≤ 5 km s^{-1}resolution) ofnearby galaxies. The goal of THINGS is to investigatekeycharacteristics related to galaxy morphology, star formation andmassdistribution across the Hubble sequence. A sample of 34 objectswithdistances between 3 and 10 Mpc will be observed, covering a widerangeof evolutionary stages and properties. Data from THINGSwillcomplement SINGS, the Spitzer Infrared Nearby Galaxy Survey. Forthe THINGS sample, high-quality observations at comparable resolutionwillthus be available from the X-ray regime through to the radio partofthe spectrum. THINGS data can be used to investigate issues such asthesmall-scale structure of the ISM, its three-dimensional structure,the(dark) matter distribution and processes leading to starformation. Todemonstrate the quality of the THINGS data products, wepresent someprelimary HI maps here of four galaxies from the THINGSsample.

Supermassive Black Holes: Relation to Dark Halos
Estimates of the masses of supermassive black holes (M bh ) in thenuclei of disk galaxies with known rotation curves are compared withestimates of the rotational velocities V m and the“indicative” masses of the galaxies M i . Although there isa correlation between M bh and V m or M i , it is appreciably weakerthan the correlation with the central velocity dispersion. The values ofM bh for early-type galaxies (S0-Sab), which have more massive bulges,are, on average, higher than the values for late-type galaxies with thesame rotational velocities. We conclude that the black-hole masses aredetermined primarily by the properties of the bulge and not therotational velocity or the mass of the galaxy.

The Object CSL-1 as an Effect of Projection
We discuss possible interpretations of the extragalactic double galaxyCSL-1. CSL-1 can be explained either as the projection of twomorphologically identical galaxies or as the effect of gravitationallensing by a cosmic string. We discuss the first of these possibilitiesin detail. More accurate observations will enable unambiguousconclusions about the nature of CSL-1.

The Classification of Galaxies: Early History and Ongoing Developments
"You ask what is the use of classification, arrangement,systematization. I answer you; order and simplification are the firststeps toward the mastery of a subject the actual enemy is the unknown."

Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae
We study the effect of environment on the properties of Type Iasupernovae by analyzing the integrated spectra of 57 local Type Iasupernova host galaxies. We deduce from the spectra the metallicity,current star formation rate, and star formation history of the host andcompare these to the supernova decline rates. Additionally, we comparethe host properties to the difference between the derived supernovadistance and the distance determined from the best-fit Hubble law. Fromthis we investigate possible uncorrected systematic effects inherent inthe calibration of Type Ia supernova luminosities using light-curvefitting techniques. Our results indicate a statistically insignificantcorrelation in the direction of higher metallicity spiral galaxieshosting fainter Type Ia supernovae. However, we present qualitativeevidence suggesting that progenitor age is more likely to be the sourceof variability in supernova peak luminosities than is metallicity. We donot find a correlation between the supernova decline rate and hostgalaxy absolute B magnitude, nor do we find evidence of a significantrelationship between decline rate and current host galaxy star formationrate. A tenuous correlation is observed between the supernova Hubbleresiduals and host galaxy metallicities. Further host galaxyobservations will be needed to refine the significance of this result.Finally, we characterize the environmental property distributions forType Ia supernova host galaxies through a comparison with two larger,more general galaxy distributions using Kolmogorov-Smirnov tests. Theresults show the host galaxy metallicity distribution to be similar tothe metallicity distributions of the galaxies of the NFGS and SDSS.Significant differences are observed between the SN Ia distributions ofabsolute B magnitude and star formation histories and the correspondingdistributions of galaxies in the NFGS and SDSS. Among these is an abruptupper limit observed in the distribution of star formation histories ofthe host galaxy sample, suggesting a Type Ia supernovae characteristicdelay time lower limit of approximately 2.0 Gyr. Other distributiondiscrepancies are investigated and the effects on the supernovaproperties are discussed.

Infrared Spectral Energy Distributions of Nearby Galaxies
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out acomprehensive multiwavelength survey on a sample of 75 nearby galaxies.The 1-850 μm spectral energy distributions (SEDs) are presented usingbroadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. Theinfrared colors derived from the globally integrated Spitzer data aregenerally consistent with the previous generation of models that weredeveloped using global data for normal star-forming galaxies, althoughsignificant deviations are observed. Spitzer's excellent sensitivity andresolution also allow a detailed investigation of the infrared SEDs forvarious locations within the three large, nearby galaxies NGC 3031(M81), NGC 5194 (M51), and NGC 7331. A wide variety of spectral shapesis found within each galaxy, especially for NGC 3031, the closest of thethree targets and thus the galaxy for which the smallest spatial scalescan be explored. Strong correlations exist between the local starformation rate and the infrared colors fν(70μm)/fν(160 μm) and fν(24μm)/fν(160 μm), suggesting that the 24 and 70 μmemission are useful tracers of the local star formation activity level.Preliminary evidence indicates that variations in the 24 μm emission,and not variations in the emission from polycyclic aromatic hydrocarbonsat 8 μm, drive the variations in the fν(8.0μm)/fν(24 μm) colors within NGC 3031, NGC 5194, andNGC 7331. If the galaxy-to-galaxy variations in SEDs seen in our sampleare representative of the range present at high redshift, thenextrapolations of total infrared luminosities and star formation ratesfrom the observed 24 μm flux will be uncertain at the factor of 5level (total range). The corresponding uncertainties using theredshifted 8.0 μm flux (e.g., observed 24 μm flux for a z=2source) are factors of 10-20. Considerable caution should be used wheninterpreting such extrapolated infrared luminosities.

The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies
I investigate the baryonic Tully-Fisher relation for a sample ofgalaxies with extended 21 cm rotation curves spanning the range 20 kms-1<~Vf<=300 km s-1. A variety ofscalings of the stellar mass-to-light ratio Υ* areconsidered. For each prescription for Υ*, I give fitsof the form Md=AVxf.Presumably, the prescription that comes closest to the correct valuewill minimize the scatter in the relation. The fit with minimum scatterhas A=50 Msolar km-4 s4 andx=4. This relation holds over five decades in mass. Galaxy color,stellar fraction, and Υ* are correlated with eachother and with Md, in the sense that more massivegalaxies tend to be more evolved. There is a systematic dependence ofthe degree of maximality of disks on surface brightness. High surfacebrightness galaxies typically have Υ*~3/4 of themaximum disk value, while low surface brightness galaxies typicallyattain ~1/4 of this amount.

Secular Evolution via Bar-driven Gas Inflow: Results from BIMA SONG
We present an analysis of the molecular gas distributions in the 29barred and 15 unbarred spirals in the BIMA CO (J=1-0) Survey of NearbyGalaxies (SONG). For galaxies that are bright in CO, we confirm theconclusion by Sakamoto et al. that barred spirals have higher moleculargas concentrations in the central kiloparsec. The SONG sample alsoincludes 27 galaxies below the CO brightness limit used by Sakamoto etal. Even in these less CO-bright galaxies we show that high central gasconcentrations are more common in barred galaxies, consistent withradial inflow driven by the bar. However, there is a significantpopulation of early-type (Sa-Sbc) barred spirals (6 of 19) that have nomolecular gas detected in the nuclear region and have very little out tothe bar corotation radius. This suggests that in barred galaxies withgas-deficient nuclear regions, the bar has already driven most of thegas within the bar corotation radius to the nuclear region, where it hasbeen consumed by star formation. The median mass of nuclear moleculargas is over 4 times higher in early-type bars than in late-type (Sc-Sdm)bars. Since previous work has shown that the gas consumption rate is anorder of magnitude higher in early-type bars, this implies that theearly types have significantly higher bar-driven inflows. The loweraccretion rates in late-type bars can probably be attributed to theknown differences in bar structure between early and late types. Despitethe evidence for bar-driven inflows in both early and late Hubble-typespirals, the data indicate that it is highly unlikely for a late-typegalaxy to evolve into an early type via bar-induced gas inflow.Nonetheless, secular evolutionary processes are undoubtedly present, andpseudobulges are inevitable; evidence for pseudobulges is likely to beclearest in early-type galaxies because of their high gas inflow ratesand higher star formation activity.

Radio-X-Ray Correlation and the ``Quiescent State'' of Black Hole Sources
Recently a correlation between the radio and X-ray luminosities,LR~L0.7X, was found in black holesources including black hole candidates in our Galaxy and activegalactic nuclei. We show that the correlation can be understood in thecontext of an accretion-jet model developed for explaining the spectraland timing properties of XTE J1118+480. More importantly, we show thatwhen the X-ray luminosity is below a critical value,<~(10-5 to 10-6)LEdd, if the jetpersists, the correlation should turn and become steeper,LR~L1.23X, and the X-radiation of thesystem should be dominated by the emission from the jet, rather than bythe accretion flow. Possible observational evidence for our predictionsis presented, and future observations to further test our predictionsare proposed.

Discovery of an Extended Ultraviolet Disk in the Nearby Galaxy NGC 4625
Recent far-UV (FUV) and near-UV (NUV) observations of the nearby galaxyNGC 4625 made by the Galaxy Evolution Explorer (GALEX) show the presenceof an extended UV disk reaching to 4 times the optical radius of thegalaxy. The UV-to-optical colors suggest that the bulk of the stars inthe disk of NGC 4625 are currently being formed, providing a uniqueopportunity to study today the physics of star formation underconditions similar to those when the normal disks of spiral galaxieslike the Milky Way first formed. In the case of NGC 4625, the starformation in the extended disk is likely to be triggered by interactionwith NGC 4618 and possibly also with the newly discovered galaxy NGC4625A. The positions of the FUV complexes in the extended disk coincidewith peaks in the H I distribution. The masses of these complexes are inthe range 103-104 Msolar, with theirHα emission (when present) being dominated by ionization fromsingle stars.

The Hubble Space Telescope View of LINER Nuclei: Evidence for a Dual Population?
We study a complete, distance-limited sample of 25 LINERs, 21 of whichhave been imaged with the Hubble Space Telescope. In nine objects wedetect an unresolved nucleus. To study their physical properties, wecompare the radio and optical properties of the nuclei of LINERs withthose of other samples of local active galactic nuclei (AGNs), namely,Seyfert galaxies and low-luminosity radio galaxies (LLRGs). Our resultsshow that the LINER population is not homogeneous, as there are twosubclasses: (1) the first class is similar to the LLRG class, as itextends the population of radio-loud nuclei to lower luminosities; (2)the second is similar to Seyfert galaxies and extends the properties ofradio-quiet nuclei toward the lowest luminosities. The objects areoptimally discriminated in the plane formed by the black hole massversus nuclear radio loudness: all radio-loud LINERs haveMBH>~108Msolar, while Seyfertgalaxies and radio-quiet LINERs haveMBH<~108Msolar. The different natureof the various classes of local AGNs are best understood when thefraction of the Eddington luminosity they irradiate,Lo/LEdd, is plotted against the nuclearradio-loudness parameter: Seyfert galaxies are associated withrelatively high radiative efficienciesLo/LEdd>~10-4 (and high accretionrates onto low-mass black holes); LLRGs are associated with lowradiative efficiencies (and low accretion rates onto high-mass blackholes); all LINERs have low radiative efficiency (and accretion rates)and can be radio-loud or radio-quiet, depending on their black holemass.Based on observations obtained at the Space Telescope Science Institute,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS5-26555.

A Simple Test for the Existence of Two Accretion Modes in Active Galactic Nuclei
By analogy to the different accretion states observed in black holeX-ray binaries (BHXBs), it appears plausible that accretion disks inactive galactic nuclei (AGNs) undergo a state transition between aradiatively efficient and inefficient accretion flow. If the radiativeefficiency changes at some critical accretion rate, there will be achange in the distribution of black hole masses and bolometricluminosities at the corresponding transition luminosity. To test thisprediction, I consider the joint distribution of AGN black hole massesand bolometric luminosities for a sample taken from the literature. Thesmall number of objects with low Eddington-scaled accretion ratesm˙<0.01 and black hole massesMBH<109Msolar constitutes tentativeevidence for the existence of such a transition in AGNs. Selectioneffects, in particular those associated with flux-limited samples,systematically exclude objects in particular regions of the(MBH,Lbol) plane. Therefore, they requireparticular attention in the analysis of distributions of black holemass, bolometric luminosity, and derived quantities such as theaccretion rate. I suggest further observational tests of the BHXB-AGNunification scheme that are based on the jet domination of the energyoutput of BHXBs in the hard state, and of the possible equivalence ofBHXB in the very high (or steep power-law) state showing ejections andefficiently accreting quasars and radio galaxies with powerful radiojets.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Constellation:Ursa Major
Right ascension:09h22m02.00s
Aparent dimensions:8.128′ × 3.981′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 2841

→ Request more catalogs and designations from VizieR