Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1863


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Chemical Properties of Milky Way and M31 Globular Clusters. I. A Comparative Study
A comparative analysis is performed between high-quality integratedspectral indices of 30 M31 globular clusters, 20 Milky Way globularclusters, and a sample of field and cluster elliptical galaxies. We findthat the Lick CN indices in the M31 and Galactic clusters are enhancedrelative to the bulges of the Milky Way, M31, and elliptical spheroids,in agreement with Burstein and coworkers. Although not particularlyevident in the Lick CN indices, the near-UV cyanogen feature(λ3883) is strongly enhanced with respect to the Galacticglobular clusters at metallicities -1.5<[Fe/H]<-0.3. Carbon showssigns of varying among these two groups. For [Fe/H]>-0.8, we observeno systematic differences in the Hδ, Hγ, or Hβ indicesbetween the M31 and Galactic globular clusters, in contrast to previousstudies. The elliptical galaxy sample lies offset from the loci of theglobular clusters in both the cyanogen-[MgFe] and Balmer-line-[MgFe]planes. Six of the M31 clusters appear young and are projected onto theM31 disk. Population synthesis models suggest that these are metal-richclusters with ages 100-800 Myr, metallicities -0.20<=[Fe/H]<=0.35,and masses 0.7-~7.0×104 Msolar. Two otheryoung clusters are Hubble V in NGC 205, observed as a template, and anolder (~3 Gyr) cluster some 7 kpc away from the plane of the disk. Thesix clusters projected onto the disk show signs of rotation similar tothe H I gas in M31, and three clusters exhibit thin disk kinematics,according to Morrison and coworkers. Dynamical mass estimates anddetailed structural parameters are required for these objects todetermine whether they are massive open clusters or globular clusters.If they are the latter, our findings suggest globular clusters may tracethe buildup of galaxy disks. In either case, we conclude that theseclusters are part of a young, metal-rich disk cluster system in M31,possibly as young as 1 Gyr old.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Fundamental parameters of the LMC clusters NGC 1836, NGC 1860, NGC 1865, SL 444, LW 224 and SL 548
Complementing our recent Washington photometric studies on intermediateage and young Large Magellanic Cloud (LMC) clusters, we now turn ourattention to six previously unstudied star clusters in the transitionrange 200-700 Myr. We study NGC 1836, 1860 and 1865, which are projectedon the LMC bar; SL 444, also located in the central disc but outside thebar; and LW 224 and SL 548, both located in the outer disc. We deriveages and metallicities from extracted T1 versusC-T1 colour-magnitude diagrams (CMDs), using theoreticalisochrones recently computed for the Washington photometric system. Forthe metallicity determinations, these CMDs are particularly sensitive.We also estimate ages and metallicities of the surrounding fields of NGC1860 and 1865 by employing the δT1 index defined inGeisler et al. (1997, AJ, 114, 1920) and theoretical isochrones. Byadding the present cluster sample to those of our previous studies, wenow gather 37 LMC clusters with homogeneous parameter determinations,which are employed to probe the chemical enrichment of the LMC and itsspatial distribution. On average, inner disc clusters turned out to benot only younger than the outer ones, but also more metal-rich; somehave solar metal content. Furthermore, inner clusters located to thewest of the LMC centre are younger and more metal-rich than theireastern counterparts. We propose that a bursting formation mechanism,with an important formation event centred at ~2.0 Gyr, provides a betterdescription of the cluster age-metallicity relation than a closed-boxchemical evolution model. In the outer disc, the field star formationseems to have lasted until 2 Gyr ago while it continued in the innerdisc for almost 1 Gyr longer.

Young star clusters immersed in intermediate-age fields in the Large Magellanic Cloud bar
We present Washington System photometry for 11 star clusters immersed inthe north-west part of the Large Magellanic Cloud (LMC) bar, centred onthe intermediate-age clusters NGC 1865 and SL 244. The fields areheavily populated by the intermediate-age component of the LMC bar. Wesucceeded in disentangling cluster colour-magnitude diagrams from thoseof the fields and in deriving reddening and ages for five clusters - SL218, BRHT4b, and NGC 1839, 1838 and 1863 - with the aid of recentWashington System theoretical isochrones. The resulting cluster agesrange between 50 and 125 Myr. Despite their proximity, NGC 1836 andBRHT4b have very different ages. Thus the possibility of these twoobjects being a binary cluster is very unlikely, although a capturecannot be ruled out a priori. Our results suggest that for eachintermediate-age cluster remaining in the LMC bar region, a number ofrobust young blue star clusters occurs in the same region.

The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud
We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Bar star clusters in the LMC - Formation history from UBV integrated photometry
The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.

Ultraviolet colors as age indicators for LMC clusters
Empirical correlations are found between log ages and the intrinsicultraviolet colors for 27 LMC clusters. The problems and limitations ofusing these correlations as age indicators for LMC clusters and otherstellar populations are discussed. The correlations are used to estimatethe ages of two LMC clusters of unknown age (NGC 1968 and NGC 1974) andthe nuclei of two nearby blue compact dwarf galaxies (NGC 1705 and NGC5253). For the latter two objects optical- and ultraviolet-based ageestimates are in good agreement.

Ellipticities at R(h) of LMC star clusters
The projected ellipticities of 53 populous LMC star clusters have beenderived by means of PDS 1010A scans and a computer interactive method ofreduction implemented on an Apollo 570 workstation. Film copies of apair of J and U plates taken with the 1.2 m UK Schmidt Telescope inAustralia were used. The ellipticities derived here agree with thosefound by previous investigators, when comparisons were possible at thesame radius. Ellipticity variations within individual globular clustersare seen to be a common phenomenon, so the ellipticities e(h) at adistance corresponding to the half-mass radius R(h) from the center wereadopted to represent the cluster's flatness. Using these values for theLMC clusters, it is found that LMC clusters are more elliptical thanthose of the Galaxy. Although the young LMC globular clusters show atendency to be more elliptical than the old ones, there is no strongevidence for a significant difference among them. Finally, e(h) wasfound to increase with the total mass of the clusters, possiblyindicating that high-mass clusters have higher angular momentum, or havemore difficulty in shedding angular momentum, than do low mass clusters,and remain longer in their initial flattened shape.

LMC clusters - Age calibration and age distribution revisited
The empirical age relation for star clusters in the Large MagellanicCloud presented by Elson and Fall (1985) are reexamined using ages basedonly on main-sequence turnoffs. The present sample includes 57 clusters,24 of which have color-magnitude diagrams published since 1985. The newcalibration is very similar to that found previously, and the scatter inthe relation corresponds to uncertainties of about a factor of 2 in age.The age distribution derived from the new calibration does not differsignificantly from that derived in earlier work. It is compared with agedistributions estimated by other authors for different samples ofclusters, and the results are discussed.

A BVRI photometric study of star clusters in the BOK region of the Large Magellanic Cloud
BVRI photometric observations of 14 LMC star clusters, obtained onphotographic plates with the 1.5-m telescope at Tololo in 1972, with the2.5-m telescope at Las Campanas in 1978-1981, and with the 3.6-mtelescope at ESO in 1982-1983, are reported. The data are presented in aseries of tables and color-color and color-magnitude diagrams, andindividually derived reddenings and mean-age estimates (mainly in therange 15-63 Myr, with one cluster 138 + or - 25 Myr old) are included.

Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud
An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.

A Catalogue of Clusters in The LMC
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Dorado
Right ascension:05h11m40.14s
Declination:-68°43'35.9"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1863

→ Request more catalogs and designations from VizieR