Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

IC 4670



Upload your image

DSS Images   Other Images

Related articles

Evolution from AGB to planetary nebula in the MSX survey
We investigate the evolution of oxygen- and carbon-rich AGB stars,post-AGB objects, and planetary nebulae using data collected mainly fromthe MSX catalogue. Magnitudes and colour indices are compared with thosecalculated from a grid of synthetic spectra that describe the post-AGBevolution beginning at the onset of the superwind. We find that carbonstars and OH/IR objects form two distinct sequences in the (K-[8.3])×([8.3]-[14.7]) MSX colour diagram. OH/IR objects are distributedin two groups: the bluest ones are crowded near [14.7]-[21.3]≃ 1and [8.3]-[14.7]≃ 2, and a second, redder group is spread over alarge area in the diagram, where post-AGB objects and planetary nebulaeare also found. High mass-loss rate OH/IR objects, post-AGB stars, andplanetary nebulae share the same region in the (K-[8.3])×([8.3]-[14.7]) and [14.7]-[21.3]×([8.3]-[14.7]) colour-colourdiagrams. This region in the diagram is clearly separated from a bluerone where most OH/IR stars are found. We use a grid of models ofpost-AGB evolution, which are compared with the data. The gap in thecolour-colour diagrams is interpreted as the result of the rapidtrajectory in the diagram of the stars that have just left the AGB.Based on results obtained by the MSX survey.Tables 1 to 3 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/565

The distances of Type I planetary nebulae
The distances D of planetary nebulae (PNe) are still extremelyuncertain. Although a variety of methods have been used to evaluate thisparameter, these are often in conflict, and subject to large random andsystematic errors. It is therefore important to evaluate D using as manyindependent procedures as possible. We outline here one further way inwhich this parameter may be assessed. It is noted that where the nebularmass range is narrow, then one might expect observed PNe radii to beroughly similar. This, where it occurs, would also result in acorrelation between their angular diameters Θ, and distances D.We find that just such a trend occurs for Type I nebulae, and we employthis to determine distances to a further 44 such outflows. Our meanvalues of D appear similar to those of Zhang [ApJS 98 (1995) 659],implying a relatively long PNe distance scale.

A reanalysis of chemical abundances in galactic PNe and comparison with theoretical predictions
New determinations of chemical abundances for He, N, O, Ne, Ar and Sare derived for all galactic planetary nebulae (PNe) so far observedwith a relatively high accuracy, in an effort to overcome differences inthese quantities obtained over the years by different authors usingdifferent procedures. These include: ways to correct for interstellarextinction, the atomic data used to interpret the observed line fluxes,the model nebula adopted to represent real objects and the ionizationcorrections for unseen ions. A unique `good quality' classical-typeprocedure, i.e. making use of collisionally excited forbidden lines toderive ionic abundances of heavy ions, has been applied to allindividual sets of observed line fluxes in each specific position withineach PN. Only observational data obtained with linear detectors, andsatisfying some `quality' criteria, have been considered. Suchobservations go from the mid-1970s up to the end of 2001. Theobservational errors associated with individual line fluxes have beenpropagated through the whole procedure to obtain an estimate of theaccuracy of final abundances independent of an author's `prejudices'.Comparison of the final abundances with those obtained in relevantmulti-object studies on the one hand allowed us to assess the accuracyof the new abundances, and on the other hand proved the usefulness ofthe present work, the basic purpose of which was to take full advantageof the vast amount of observations done so far of galactic PNe, handlingthem in a proper homogeneous way. The number of resulting PNe that havedata of an adequate quality to pass the present selection amounts to131. We believe that the new derived abundances constitute a highlyhomogeneous chemical data set on galactic PNe, with realisticuncertainties, and form a good observational basis for comparison withthe growing number of predictions from stellar evolution theory. Owingto the known discrepancies between the ionic abundances of heavyelements derived from the strong collisonally excited forbidden linesand those derived from the weak, temperature-insensitive recombinationlines, it is recognized that only abundance ratios between heavyelements can be considered as satisfactorily accurate. A comparison withtheoretical predictions allowed us to assess the state of the art inthis topic in any case, providing some findings and suggestions forfurther theoretical and observational work to advance our understandingof the evolution of low- and intermediate-mass stars.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

Angular dimensions of planetary nebulae
We have measured angular dimensions of 312 planetary nebulae from theirimages obtained in Hα (or Hα + [NII]). We have appliedthree methods of measurements: direct measurements at the 10% level ofthe peak surface brightness, Gaussian deconvolution and second-momentdeconvolution. The results from the three methods are compared andanalysed. We propose a simple deconvolution of the 10% levelmeasurements which significantly improves the reliability of thesemeasurements for compact and partially resolved nebulae. Gaussiandeconvolution gives consistent but somewhat underestimated diameterscompared to the 10% measurements. Second-moment deconvolution givesresults in poor agreement with those from the other two methods,especially for poorly resolved nebulae. From the results of measurementsand using the conclusions of our analysis we derive the final nebulardiameters which should be free from systematic differences between small(partially resolved) and extended (well resolved) objects in our sample.Table 1 is only available in electronic form athttp://www.edpsciences.org

New Emission Line Planetary Nebulae Nuclei in the Direction of the Galactic Center
Not Available

Gas temperature and excitation classes in planetary nebulae
Empirical methods to estimate the elemental abundances in planetarynebulae usually use the temperatures derived from the [O III] and [N II]emission-line ratios, respectively, for the high- and low-ionizationzones. However, for a large number of objects these values may not beavailable. In order to overcome this difficulty and allow a betterdetermination of abundances, we discuss the relationship between thesetwo temperatures. Although a correlation is not easily seen when asample of different PNe types is used, the situation is improved whenthey are gathered into excitation classes. From [OII]/[OIII] andHeII/HeI line ratios, we define four excitation classes. Then, usingstandard photoionization models which fit most of the data, a linearrelation between the two temperatures is obtained for each of the fourexcitation classes. The method is applied to several objects for whichonly one temperature can be obtained from the observed emission linesand is tested by recalculation of the radial abundance gradient of theGalaxy using a larger number of PNe. We verified that our previousgradient results, obtained with a smaller sample of planetary nebulae,are not changed, indicating that the temperature relation obtained fromthe photoionization models are a good approximation, and thecorresponding statistical error decreases as expected. Tables 3-5, 7 and9 are only available in electronic form at http://www.edpsciences.org

A Catalogue of IJK Photometry of PNe with DENIS
Near-infrared photometry of planetary nebulae (PNe) allows theclassification of those objects (Whitelock 1985; Peña &Torres-Peimbert 1987). We present the largest homogeneous sample.

An analysis of the observed radio emission from planetary nebulae
We have analysed the radio fluxes for 264 planetary nebulae for whichreliable measurements of fluxes at 1.4 and 5 GHz, and of nebulardiameters are available. For many of the investigated nebulae, theoptical thickness is important, especially at 1.4 GHz. Simple modelslike the one specified only by a single optical thickness or spherical,constant density shells do not account satisfactorily for theobservations. Also an r-2 density distribution is ruled out.A reasonable representation of the observations can be obtained by atwo-component model having regions of two different values of opticalthickness. We show that the nebular diameters smaller than 10arcsec areuncertain, particularly if they come from photographic plates orGaussian fitting to the radio profile. While determining theinterstellar extinction from an optical to radio flux ratio, cautionshould be paid regarding optical thickness effects in the radio. We havedeveloped a method for estimating the value of self absorption. At 1.4GHz self absorption of the flux is usually important and can exceed afactor of 10. At 5 GHz self absorption is negligible for most of theobjects, although in some cases it can reach a factor of 2. The Galacticbulge planetary nebulae when used to calibrate the Shklovsky method givea mean nebular mass of 0.14 Msun. The statistical uncertaintyof the Shklovsky distances is smaller than a factor of 1.5. Table 1 isonly available in electronic form at http://www.edpsciences.org.

The Galactic disc distribution of planetary nebulae with warm dust emission features - I
We investigate the Galactic disc distribution of a sample of planetarynebulae characterized in terms of their mid-infrared spectral features.The total number of Galactic disc PNe with 8-13μm spectra is broughtup to 74 with the inclusion of 24 new objects, the spectra of which wepresent for the first time. 54 PNe have clearly identified warm dustemission features, and form a sample that we use to construct thedistribution of the C/O chemical balance in Galactic disc PNe. The dustemission features complement the information on the progenitor massesbrought by the gas-phase N/O ratios: PNe with unidentified infraredemission bands have the highest N/O ratios, while PNe with the silicatesignature have either very high N enrichment or close to none. We find atrend for a decreasing proportion of O-rich PNe towards the third andfourth Galactic quadrants. Two independent distance scales confirm thatthe proportion of O-rich PNe decreases from 30\pm 9 per cent inside the solar circle to 14\pm 7 per cent outside. PNe with warm dustare also the youngest. PNe with no warm dust are uniformly distributedin C/O and N/O ratios, and do not appear to be confined to C/O\sim 1. They also have higher 6-cmfluxes, as expected from more evolved PNe. We show that the IRAS fluxesare a good representation of the bolometric flux for compact andIR-bright PNe, which are probably optically thick. Selection of objectswith \fontshape{it}{F}(12\hphantom{0}\mu m)>0.5\hphantom{0} Jyshould probe a good portion of the Galactic disc for these young, denseand compact nebulae, and the dominant selection effects are rooted inthe PN catalogues.

Gravity distances of planetary nebulae II. Aplication to a sample of galactic objects.
Not Available

The dust content of planetary nebulae: a reappraisal
We have performed a statistical analysis using broad band IRAS data onabout 500 planetary nebulae with the aim of characterizing their dustcontent. Our approach is different from previous studies in that it usesan extensive grid of photoionization models to test the methods forderiving the dust temperature, the dust-to-gas mass ratio and theaverage grain size. In addition, we use only distance independentdiagrams. With our models, we show the effect of contamination by atomiclines in the broad band IRAS fluxes during planetary nebula evolution.We find that planetary nebulae with very different dust-to-gas massratios exist, so that the dust content is a primordial parameter for theinterpretation of far infrared data of planetary nebulae. In contrastwith previous studies, we find no evidence for a decrease in thedust-to-gas mass ratio as the planetary nebulae evolve. We also showthat the decrease in grain size advocated by Natta & Panagia(\cite{NattaPanagia}) and Lenzuni et al. (\cite{Lenzuni}) is an artefactof their method of analysis. Our results suggest that the timescale fordestruction of dust grains in planetary nebulae is larger than theirlifetime. Table~1 is only accessible in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Infrared Planetary Nebulae in the NRAO VLA Sky Survey
In order to construct a sample of planetary nebulae (PNe) unbiased bydust extinction, we first selected the 1358 sources in the IRAS PointSource Catalog north of J2000 declination delta=-40^deg having measuredS(25 μm)>=1 Jy and colors characteristic of PNe: detections orupper limits consistent with both S(12 μm)<=0.35S(25 μm) andS(25 μm)>=0.35S(60 μm). The majority are radio-quietcontaminating sources such as asymptotic giant branch stars. Free-freeemission from genuine PNe should make them radio sources. The 1.4 GHzNRAO VLA Sky Survey (NVSS) images and source catalog were used to rejectradio-quiet mid-infrared sources. We identified 454 IRAS sources withradio sources brighter than S~2.5 mJy beam^-1 (equivalent to T~0.8 K inthe 45" FHWM NVSS beam) by positional coincidence. They comprise 332known PNe in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulaeand 122 candidate PNe, most of which lie at very low Galactic latitudes.Exploratory optical spectroscopic observations suggest that most ofthese candidates are indeed PNe optically dimmed by dust extinction,although some contamination remains from H II regions, Seyfert galaxies,etc. Furthermore, the NVSS failed to detect only 4% of the known PNe inour infrared sample. Thus it appears that radio selection can greatlyimprove the reliability of PN candidate samples withoutsacrificingcompleteness.

Electron densities in planetary nebulae, and the unusual characteristics of the [S BT II] emission zone} ] densities in planetary nebulae
We investigate the radial variation of electron densities in planetarynebulae, using values of ne deriving from the [S ii]<~mbda6717/<~mbda6730 line ratio. As a result, we are able to showthat there is a sharp discontinuity in densities of order 1.4 dex closeto nebular radii R=0.1 pc. It is proposed, as a consequence, that mostnebulae contain two primary [S ii] emission zones, with densitiesdiffering by a factor ~ 10(2) . The intensity of emission from thedenser component increases by an order of magnitude where nebulae passfrom radiation to density-bound expansion regimes, resulting in acorresponding discontinuous jump in [S ii]/Hβ line ratios. Theorigins of these changes are not entirely clear, although one mechanismis investigated whereby the superwind outflows shock interact withexterior AGB envelopes. Finally, the derived trends in ne(R)are used to determine distances for a further 262 nebulae. The resultingdistance scale appears to be comparable to that of Daub (1982) and Cahnet al. (1992).

The kinematics of 867 galactic planetary nebulae
We present a compilation of radial velocities of 867 galactic planetarynebulae. Almost 900 new measurements are included. Previously publishedkinematical data are compared with the new high-resolution data toassess their accuracies. One of the largest samples in the literatureshows evidence for a systematic velocity offset. We calculate weightedaverages between all available data. Of the final values in thecatalogue, 90% have accuracies better than 20 km s(-1) . We use thiscompilation to derive kinematical parameters of the galacticdifferential rotation obtained from least-square fitting and toestablish the Disk rotation curve; we find no significal trend for thepresence of an increasing external rotation curve. We examine also therotation of the bulge; the derived curve is consistent with a linearlyincreasing rotation velocity with l: we find V_b,r=(9.9+/-1.3)l -(6.7+/-8.5) km s(-1) . A possible steeper gradient in the innermostregion is indicated. Table 2 is available in electronic form only, viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Planetary Nebulae in the NRAO VLA Sky Survey
The 1.4 GHz NRAO VLA Sky Survey (NVSS) images and source catalog wereused to detect radio emission from the 885 planetary nebulae north ofJ2000 declination delta = -40 deg in the Strasbourg-ESO Catalogue ofGalactic Planetary Nebulae. We identified 680 radio sources brighterthan about S = 2.5 mJy beam-1 (equivalent to T ~ 0.8 K in the 45" FWHMNVSS beam) with planetary nebulae by coincidence with accurate opticalpositions measured from Digitized Sky Survey (DSS) images. Totalextinction coefficients c at lambda = 4861 Angstroms were calculated forthe 429 planetary nebulae with available H beta fluxes and low free-freeoptical depths at 1.4 GHz. The variation of c with Galactic latitude andlongitude is consistent with the extinction being primarily interstellarand not intrinsic.

Abundances in planetary nebulae near the galactic centre. I. Abundance determinations
Abundance determinations of about 110 planetary nebulae, which arelikely to be in the Galactic Bulge are presented. Plasma diagnosticshave been performed by making use of the available forbidden line ratioscombined with radio continuum measurements. Chemical abundances of He,O, N, Ne, S, Ar, and Cl are then derived by employing theoreticalnebular models as interpolation devices in establishing the ionizationcorrection factors (ICFs) used to estimate the distribution of atomsamong unobserved ionization stages. The overall agreement between theresults derived by using the model-ICFs and those obtained from thetheoretical models is reasonably good. The uncertainties related to thetotal abundances show a clear dependence on the level of excitation. Inmost cases, the abundances of chlorine can be derived only in objectswith a relatively high Cl-abundance. Contrary to the conclusionpreviously drawn by \cite[Webster (1988)]{we88}, we found the excitationclasses are not uniformly distributed. A clear peak at about classes 5and 6 is noticed. The distribution is shifted toward a lower excitationrange with respect to that of the nearby nebulae, reflecting thedifference in the central star temperature distribution between the twosamples.

Search for envelopes of some stellar planetary nebulae, symbiotic stars and further emission-line objects
At 17 emission-line objects, mainly PN, the seeing disc has beencompared with that of some surrounding stars (CCD frames taken throughB, V, R, [OIII] 5007 Angstroms and H alpha filters). Nebulosities werefound at: CPD-53.8315 degrees (0.5" in x-direction, 0.4" iny-direction), H^2-2 (0.3", 1.4") and CPD-56.8032 degrees (1.3", 1.3").Further small nebulosities are possible at MWC 560, MWC 574, LSIV-12.111 degrees and HR Del, but they should be considered as ratheruncertain. Besides, the known outer nebula at CPD-53.8315 degrees (2condensations, 11.6" separation, PA = 146 degrees) was observed, and theauthor discovered a circular halo of 50" around Hb 6 - both outernebulosities visible in the light of H alpha. Based on observationscollected at the European Southern Observatory at La Silla, Chile.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Properties That Cannot Be Explained by the Progenitors of Planetary Nebulae
I classify a large number of planetary nebulae (458) according to theprocess that caused their progenitors to blow axisymmetrical winds. Theclassification is based primarily on the morphologies of the differentplanetary nebulae, assuming that binary companions, stellar orsubstellar, are necessary in order to have axisymmetrical mass loss onthe asymptotic giant branch. I propose four evolutionary classes,according to the binary-model hypothesis: (1) Progenitors of planetarynebula that did not interact with any companion. These amount to ~10% ofall planetary nebulae. (2) Progenitors that interact with stellarcompanions that avoided a common envelope, 11^{+2}_{-3}% of all nebulae.(3) Progenitors that interact with stellar companions via a commonenvelope phase, 23^{+11}_{-5}% of all nebulae. (4) Progenitors thatinteract with substellar (i.e., planets and brown dwarfs) companions viaa common envelope phase, 56^{+5}_{-8}% of all nebulae. In order todefine and build the different classes, I start with clarifying somerelevant terms and processes related to binary evolution. I then discusskinematical and morphological properties of planetary nebulae thatappear to require the interaction of the planetary nebula progenitorsand/or their winds with companions, stellar or substellar.

Color of Planetary Nebulae in the DENIS Survey
Not Available

Classification of planetary nebulae by cluster analysis and artificial neural networks.
According to the chemical composition, a sample of 192 Planetary Nebulaeof different types has been re-classified, and 41 others have beenclassified for the first time, by means of two methods not employed sofar in this field: hierarchical cluster analysis and supervisedartificial neural network. The cluster analysis reveals itself as a goodfirst guess for grouping Planetary Nebulae, while an artificial neuralnetwork provides reliable automated classification of this kind ofobjects.

The Distances of Planetary Nebulae and the Galactic Bulge
We describe an improved method for determining the distances ofplanetary nebulae (PNs) based on a theoretical/empirical relationshipbetween their radii and radio surface brightness. Like the Shklovsky(constant mass) distance method, our relationship requires only radioflux density and angular size measurements, which are widely availablein the literature. Based on models matching the overall Galacticdistribution of PNs, we determine how PNs observed in the direction ofthe Galactic center are actually distributed relative to the bulge inorder to establish the usefulness of these PNs for distance studies. Wethen use the bulge PNs along with PNs with independent distances toestablish, calibrate, and test the accuracy of the method. When comparedto the best available data our distance method appears to yield distanceerrors consistent with a scatter of 25% (1 (j). And, based on our modelsscaled to local PNs, we find a mean Galactic center distance of 8.3 +2.6 kpc for the bulge PNs. The relationship that PNs exhibit betweenradius and surface brightness is in excellent agreement with oursimulated nebulae from Paper I (Buckley & Schneider 1995). We findthat no simple power law can describe the changing mass and radius of aPN as it ages; however, our empirical relationship has a limitingbehavior that is almost indistinguishable from the assumption made inShklovsky's distance method that PNs have a constant ionized mass. Wereexamine the dispute about the validity of the Shklovsky's distancemethod as applied to Galactic center PNs in light of these results, andwe argue that the Shklovsky method does predict the distances of large,low surface brightness PNs well, but it increasingly overestimates thedistance of smaller PNs.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A statistical distance scale for Galactic planetary nebulae
A statistical distance scale is proposed. It is based on the correlationbetween the ionized mass and the radius and the correlation between theradio continuum surface brightness temperature and the nebular radius.The proposed statistical distance scale is an average of the twodistances obtained while using the correlation. These correlations,calibrated based on the 1`32 planetary nebulae with well-determinedindividual distances by Zhang, can reproduce not only the averagedistance of a sample of Galactic Bulge planetary nebulae exactly at thedistance to the Galactic center, but also the expected Gaussiandistribution of their distances around the Galactic center. This newdistance scale is applied to 647 Galactic planetary nebulae. It isestimated that this distance scale can be accurate on average to35%-50%. Our statistical distance scale is in good agreement with theone recently proposed by Van de Steene and Zijlstra. The correlationsfound in this study can be attributed to the fact that the core mass ofthe central stars has a very sharp distribution, strongly peaked atapprox. 0.6 solar mass. We stress that the scatter seen in thestatistical distance scale is likely to be real. The scatter is causedby the fact that the core mass distribution, although narrow andstrongly peaked, has a finite width.

Planetary nebulae in the direction of the galactic bulge. I. New radial velocities based on image-tube spectra.
Radial velocities of 76 objects in the direction of the galactic centrebased on 153 spectra (range 3500-7350A) are presented. Using thedispersion 45-100A/mm the internal error of the mean object is 12km/sdepending on the number of lines used, whereas the external error wasderived to be +/-4.7km/s. The excitation classes of the nebulae werealso estimated.

On an alternative statistical distance scale for planetary nebulae. Catalog with statistical distances to planetary nebulae.
We have proposed a statistical method to determine distances toplanetary nebulae. The method is based on an empirical correlationbetween the radio-continuum brightness temperature and radius. Here wepresent a catalog of distance determinations calculated using thismethod.

Abundances and radial gradients from disk planetary nebulae: He, N, C, and CL
Chemical abundances of the elements He, N, C, and Cl are presented fordisk planetary nebulae, comprising Peimbert types I, II, and III.Average abundances for these classes are determined and compared withthe remaining abundances available. The presence of abundance gradientsrelative to hydrogen for disk nebulae is investigated in a region ofabout 8 kpc centered in the solar system. It can be concluded that thegradients of the ratios N/H, Cl/H, and probably C/H are similar to theO/H gradient, especially for type II objects.

A catalogue HeII 4686 line intensities in Galactic planetary nebulae.
We have compiled the intensities of the HeII 4686 lines measured inGalactic planetary nebulae. We present a few observational diagramsrelated to this parameter, and discuss them with the help of theoreticaldiagrams obtained from simple model planetary nebulae surroundingevolving central stars of various masses. We determine the hydrogen andhelium Zanstra temperature for all the objects with accurate enoughdata. We argue that, for Galactic planetary nebulae as a whole, the maincause for the Zanstra discrepancy is leakage of stellar ionizing photonsfrom the nebulae.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:17h55m07.02s
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
ICIC 4670

→ Request more catalogs and designations from VizieR